Kevin D. Friedland, Kisei R. Tanaka, Szymon Smoliński, Yanjun Wang, Cameron Hodgdon, Mackenzie Mazur, John Wiedenmann, Chandra Goetsch, Daniel E. Pendleton
{"title":"美国东北陆架生态系统鱼类和大型无脊椎动物的分布和生物量趋势","authors":"Kevin D. Friedland, Kisei R. Tanaka, Szymon Smoliński, Yanjun Wang, Cameron Hodgdon, Mackenzie Mazur, John Wiedenmann, Chandra Goetsch, Daniel E. Pendleton","doi":"10.1002/mcf2.10235","DOIUrl":null,"url":null,"abstract":"<p>Climate change can affect the habitat of marine species and hence their persistence and adaptation. Trends in area of occurrence and population biomass were examined for 177 fish and macroinvertebrates resident to the Northeast U.S. Continental Shelf ecosystem. Samples of these organisms were taken during a time series of research bottom trawl surveys conducted in the spring and autumn 1976–2019. The occurrence area of each taxon was modeled as the distribution of occurrence probability based on a random forest presence/absence classification model. Following, a population biomass of each taxon was modeled as a minimum swept area estimate, where the ecosystem was stratified biannually based on each taxon's spatial distribution. In both seasons, the sum of occurrence area and biomass across all modeled species increased over the study period. The summation of biomass is problematic since catchability is not known for most species; more importantly, most time series of individual species biomass trended higher. We found that the ratio of biomass to occurrence area, intended as a measure of productivity, showed no change in the autumn and had a weak increasing trend in spring. For the majority of taxa, the rate of change in biomass tracked changes in occurrence area (either positive or negative), but there were cases where the direction of change in biomass was opposite to the direction of change in occurrence area. Thermal conditions in surface waters appear to be a more important driver of occurrence area and biomass change than the change in thermal conditions near the bottom. These findings provide critical insights into the expected changes in ecosystem productivity transpiring with climate change.</p>","PeriodicalId":51257,"journal":{"name":"Marine and Coastal Fisheries","volume":"15 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcf2.10235","citationCount":"0","resultStr":"{\"title\":\"Trends in Area of Occurrence and Biomass of Fish and Macroinvertebrates on the Northeast U.S. Shelf Ecosystem\",\"authors\":\"Kevin D. Friedland, Kisei R. Tanaka, Szymon Smoliński, Yanjun Wang, Cameron Hodgdon, Mackenzie Mazur, John Wiedenmann, Chandra Goetsch, Daniel E. Pendleton\",\"doi\":\"10.1002/mcf2.10235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change can affect the habitat of marine species and hence their persistence and adaptation. Trends in area of occurrence and population biomass were examined for 177 fish and macroinvertebrates resident to the Northeast U.S. Continental Shelf ecosystem. Samples of these organisms were taken during a time series of research bottom trawl surveys conducted in the spring and autumn 1976–2019. The occurrence area of each taxon was modeled as the distribution of occurrence probability based on a random forest presence/absence classification model. Following, a population biomass of each taxon was modeled as a minimum swept area estimate, where the ecosystem was stratified biannually based on each taxon's spatial distribution. In both seasons, the sum of occurrence area and biomass across all modeled species increased over the study period. The summation of biomass is problematic since catchability is not known for most species; more importantly, most time series of individual species biomass trended higher. We found that the ratio of biomass to occurrence area, intended as a measure of productivity, showed no change in the autumn and had a weak increasing trend in spring. For the majority of taxa, the rate of change in biomass tracked changes in occurrence area (either positive or negative), but there were cases where the direction of change in biomass was opposite to the direction of change in occurrence area. Thermal conditions in surface waters appear to be a more important driver of occurrence area and biomass change than the change in thermal conditions near the bottom. These findings provide critical insights into the expected changes in ecosystem productivity transpiring with climate change.</p>\",\"PeriodicalId\":51257,\"journal\":{\"name\":\"Marine and Coastal Fisheries\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcf2.10235\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Coastal Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mcf2.10235\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Coastal Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mcf2.10235","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Trends in Area of Occurrence and Biomass of Fish and Macroinvertebrates on the Northeast U.S. Shelf Ecosystem
Climate change can affect the habitat of marine species and hence their persistence and adaptation. Trends in area of occurrence and population biomass were examined for 177 fish and macroinvertebrates resident to the Northeast U.S. Continental Shelf ecosystem. Samples of these organisms were taken during a time series of research bottom trawl surveys conducted in the spring and autumn 1976–2019. The occurrence area of each taxon was modeled as the distribution of occurrence probability based on a random forest presence/absence classification model. Following, a population biomass of each taxon was modeled as a minimum swept area estimate, where the ecosystem was stratified biannually based on each taxon's spatial distribution. In both seasons, the sum of occurrence area and biomass across all modeled species increased over the study period. The summation of biomass is problematic since catchability is not known for most species; more importantly, most time series of individual species biomass trended higher. We found that the ratio of biomass to occurrence area, intended as a measure of productivity, showed no change in the autumn and had a weak increasing trend in spring. For the majority of taxa, the rate of change in biomass tracked changes in occurrence area (either positive or negative), but there were cases where the direction of change in biomass was opposite to the direction of change in occurrence area. Thermal conditions in surface waters appear to be a more important driver of occurrence area and biomass change than the change in thermal conditions near the bottom. These findings provide critical insights into the expected changes in ecosystem productivity transpiring with climate change.
期刊介绍:
Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science publishes original and innovative research that synthesizes information on biological organization across spatial and temporal scales to promote ecologically sound fisheries science and management. This open-access, online journal published by the American Fisheries Society provides an international venue for studies of marine, coastal, and estuarine fisheries, with emphasis on species'' performance and responses to perturbations in their environment, and promotes the development of ecosystem-based fisheries science and management.