具有自同态的半群上D 'Alembert泛函方程的一个变体

IF 0.4 Q4 MATHEMATICS
A. Akkaoui, M. El Fatini, B. Fadli
{"title":"具有自同态的半群上D 'Alembert泛函方程的一个变体","authors":"A. Akkaoui, M. El Fatini, B. Fadli","doi":"10.2478/amsil-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract Let S be a semigroup, and let φ, ψ: S → S be two endomorphisms (which are not necessarily involutive). Our main goal in this paper is to solve the following generalized variant of d’Alembert’s functional equation f(xϕ(y))+f(ψ(y)x)=2f(x)f(y),      x,y ∈ S, f\\left( {x\\varphi \\left( y \\right)} \\right) + f\\left( {\\psi \\left( y \\right)x} \\right) = 2f\\left( x \\right)f\\left( y \\right),\\,\\,\\,\\,\\,\\,x,y\\, \\in \\,S, where f : S → ℂ is the unknown function by expressing its solutions in terms of multiplicative functions. Some consequences of this result are presented.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"1 - 14"},"PeriodicalIF":0.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Variant of D’Alembert’s Functional Equation on Semigroups with Endomorphisms\",\"authors\":\"A. Akkaoui, M. El Fatini, B. Fadli\",\"doi\":\"10.2478/amsil-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let S be a semigroup, and let φ, ψ: S → S be two endomorphisms (which are not necessarily involutive). Our main goal in this paper is to solve the following generalized variant of d’Alembert’s functional equation f(xϕ(y))+f(ψ(y)x)=2f(x)f(y),      x,y ∈ S, f\\\\left( {x\\\\varphi \\\\left( y \\\\right)} \\\\right) + f\\\\left( {\\\\psi \\\\left( y \\\\right)x} \\\\right) = 2f\\\\left( x \\\\right)f\\\\left( y \\\\right),\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,x,y\\\\, \\\\in \\\\,S, where f : S → ℂ is the unknown function by expressing its solutions in terms of multiplicative functions. Some consequences of this result are presented.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2022-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设S为半群,设φ,ψ:S→ S是两个自同态(不一定是对合的)。我们在本文中的主要目标是求解达朗贝尔函数方程f(xξ(y))+f(ψ(y,x)=2f(x)f(y)的以下广义变体,      x、 y ∈ S、 f\left({x\varphi\left(y\right)}\right)+f\left→ ℂ 是用乘法函数表示其解的未知函数。给出了这一结果的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Variant of D’Alembert’s Functional Equation on Semigroups with Endomorphisms
Abstract Let S be a semigroup, and let φ, ψ: S → S be two endomorphisms (which are not necessarily involutive). Our main goal in this paper is to solve the following generalized variant of d’Alembert’s functional equation f(xϕ(y))+f(ψ(y)x)=2f(x)f(y),      x,y ∈ S, f\left( {x\varphi \left( y \right)} \right) + f\left( {\psi \left( y \right)x} \right) = 2f\left( x \right)f\left( y \right),\,\,\,\,\,\,x,y\, \in \,S, where f : S → ℂ is the unknown function by expressing its solutions in terms of multiplicative functions. Some consequences of this result are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信