{"title":"具有非线性波动函数的二维全非线性Black-Scholes方程的多重网格方法","authors":"Aicha Driouch Hassan Al Moatassime","doi":"10.4208/jms.v53n3.20.02","DOIUrl":null,"url":null,"abstract":"This paper deals with the task of pricing European basket options in the presence of transaction costs. We develop a model that incorporates the illiquidity of the market into the classical two-assets Black-Scholes framework. We perform a numerical simulation using finite difference method. We consider a nonlinear multigrid method in order to reduce computational costs. The objective of this paper is to investigate a deterministic extension for the Barles’ and Soner’s model and to demonstrate the effectiveness of multigrid approach to solving a fully nonlinear two dimensional Black-Scholes problem. AMS subject classifications: 65N55, 65N06, 35K55, 65BXX","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multigrid Method for a Two Dimensional Fully Nonlinear Black-Scholes Equation with a Nonlinear Volatility Function\",\"authors\":\"Aicha Driouch Hassan Al Moatassime\",\"doi\":\"10.4208/jms.v53n3.20.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the task of pricing European basket options in the presence of transaction costs. We develop a model that incorporates the illiquidity of the market into the classical two-assets Black-Scholes framework. We perform a numerical simulation using finite difference method. We consider a nonlinear multigrid method in order to reduce computational costs. The objective of this paper is to investigate a deterministic extension for the Barles’ and Soner’s model and to demonstrate the effectiveness of multigrid approach to solving a fully nonlinear two dimensional Black-Scholes problem. AMS subject classifications: 65N55, 65N06, 35K55, 65BXX\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v53n3.20.02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v53n3.20.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multigrid Method for a Two Dimensional Fully Nonlinear Black-Scholes Equation with a Nonlinear Volatility Function
This paper deals with the task of pricing European basket options in the presence of transaction costs. We develop a model that incorporates the illiquidity of the market into the classical two-assets Black-Scholes framework. We perform a numerical simulation using finite difference method. We consider a nonlinear multigrid method in order to reduce computational costs. The objective of this paper is to investigate a deterministic extension for the Barles’ and Soner’s model and to demonstrate the effectiveness of multigrid approach to solving a fully nonlinear two dimensional Black-Scholes problem. AMS subject classifications: 65N55, 65N06, 35K55, 65BXX
期刊介绍:
Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.