H. P. Piyathilaka, R. Sooriyagoda, V. R. Whiteside, T. Mishima, Michael B. Santos, I. Sellers, A. Bristow
{"title":"光伏应用的III-V异质结构中的热载流子动力学和输运","authors":"H. P. Piyathilaka, R. Sooriyagoda, V. R. Whiteside, T. Mishima, Michael B. Santos, I. Sellers, A. Bristow","doi":"10.1117/1.JPE.12.032209","DOIUrl":null,"url":null,"abstract":"Abstract. Type-II multiple quantum well superlattices based on InAs/AlAsSb are investigated for ground- and excited-state charge carrier transport and excited-state charge carrier dynamics. It is found that ground-state transport matches well to impurity and optical phonon interactions, while the excited-state transport shows increased terahertz photoconductivity for the correct excitation conditions that have previously been linked to a metastability in the early time response after photoexcitation. This regime also shows a reduction in carrier mobility, which is also expected to be due to ambipolar diffusion and increased carrier–carrier scattering. Overall, carrier excited-state dynamics confirm the metastability in early time response and are related to strong Auger scattering. For increased excitation intensities, the Auger-scattering rate increases to obtain a lower carrier density more rapidly. The result is a stronger scattering of carriers energetically deeper into their respective bands, where they exhibit a much slower carrier recombination rate and can maintain their relative temperature as a result of a phonon bottleneck that forces reabsorption of optical phonons. In addition to a previously reported phonon bottleneck, the carrier dynamics offer potential pathways to stabilize hot carriers with further bandgap engineering.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"032209 - 032209"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot-carrier dynamics and transport in III–V heterostructures for photovoltaic applications\",\"authors\":\"H. P. Piyathilaka, R. Sooriyagoda, V. R. Whiteside, T. Mishima, Michael B. Santos, I. Sellers, A. Bristow\",\"doi\":\"10.1117/1.JPE.12.032209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Type-II multiple quantum well superlattices based on InAs/AlAsSb are investigated for ground- and excited-state charge carrier transport and excited-state charge carrier dynamics. It is found that ground-state transport matches well to impurity and optical phonon interactions, while the excited-state transport shows increased terahertz photoconductivity for the correct excitation conditions that have previously been linked to a metastability in the early time response after photoexcitation. This regime also shows a reduction in carrier mobility, which is also expected to be due to ambipolar diffusion and increased carrier–carrier scattering. Overall, carrier excited-state dynamics confirm the metastability in early time response and are related to strong Auger scattering. For increased excitation intensities, the Auger-scattering rate increases to obtain a lower carrier density more rapidly. The result is a stronger scattering of carriers energetically deeper into their respective bands, where they exhibit a much slower carrier recombination rate and can maintain their relative temperature as a result of a phonon bottleneck that forces reabsorption of optical phonons. In addition to a previously reported phonon bottleneck, the carrier dynamics offer potential pathways to stabilize hot carriers with further bandgap engineering.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"12 1\",\"pages\":\"032209 - 032209\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.12.032209\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.032209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hot-carrier dynamics and transport in III–V heterostructures for photovoltaic applications
Abstract. Type-II multiple quantum well superlattices based on InAs/AlAsSb are investigated for ground- and excited-state charge carrier transport and excited-state charge carrier dynamics. It is found that ground-state transport matches well to impurity and optical phonon interactions, while the excited-state transport shows increased terahertz photoconductivity for the correct excitation conditions that have previously been linked to a metastability in the early time response after photoexcitation. This regime also shows a reduction in carrier mobility, which is also expected to be due to ambipolar diffusion and increased carrier–carrier scattering. Overall, carrier excited-state dynamics confirm the metastability in early time response and are related to strong Auger scattering. For increased excitation intensities, the Auger-scattering rate increases to obtain a lower carrier density more rapidly. The result is a stronger scattering of carriers energetically deeper into their respective bands, where they exhibit a much slower carrier recombination rate and can maintain their relative temperature as a result of a phonon bottleneck that forces reabsorption of optical phonons. In addition to a previously reported phonon bottleneck, the carrier dynamics offer potential pathways to stabilize hot carriers with further bandgap engineering.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.