Gromov双曲空间的势论

IF 0.9 3区 数学 Q2 MATHEMATICS
Matthias Kemper, J. Lohkamp
{"title":"Gromov双曲空间的势论","authors":"Matthias Kemper, J. Lohkamp","doi":"10.1515/agms-2022-0147","DOIUrl":null,"url":null,"abstract":"Abstract Gromov hyperbolic spaces have become an essential concept in geometry, topology and group theory. Herewe extend Ancona’s potential theory on Gromov hyperbolic manifolds and graphs of bounded geometry to a large class of Schrödinger operators on Gromov hyperbolic metric measure spaces, unifying these settings in a common framework ready for applications to singular spaces such as RCD spaces or minimal hypersurfaces. Results include boundary Harnack inequalities and a complete classification of positive harmonic functions in terms of the Martin boundary which is identified with the geometric Gromov boundary.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"10 1","pages":"394 - 431"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Potential Theory on Gromov Hyperbolic Spaces\",\"authors\":\"Matthias Kemper, J. Lohkamp\",\"doi\":\"10.1515/agms-2022-0147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gromov hyperbolic spaces have become an essential concept in geometry, topology and group theory. Herewe extend Ancona’s potential theory on Gromov hyperbolic manifolds and graphs of bounded geometry to a large class of Schrödinger operators on Gromov hyperbolic metric measure spaces, unifying these settings in a common framework ready for applications to singular spaces such as RCD spaces or minimal hypersurfaces. Results include boundary Harnack inequalities and a complete classification of positive harmonic functions in terms of the Martin boundary which is identified with the geometric Gromov boundary.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"10 1\",\"pages\":\"394 - 431\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0147\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0147","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

格罗莫夫双曲空间已成为几何、拓扑学和群论中的一个重要概念。在这里,我们将Ancona关于Gromov双曲流形和有界几何图的势理论扩展到Gromov双曲度量度量空间上的一大类Schrödinger算子,将这些设置统一在一个公共框架中,准备应用于奇异空间,如RCD空间或极小超曲面。结果包括边界Harnack不等式和Martin边界的正调和函数的完全分类,该边界与几何Gromov边界一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential Theory on Gromov Hyperbolic Spaces
Abstract Gromov hyperbolic spaces have become an essential concept in geometry, topology and group theory. Herewe extend Ancona’s potential theory on Gromov hyperbolic manifolds and graphs of bounded geometry to a large class of Schrödinger operators on Gromov hyperbolic metric measure spaces, unifying these settings in a common framework ready for applications to singular spaces such as RCD spaces or minimal hypersurfaces. Results include boundary Harnack inequalities and a complete classification of positive harmonic functions in terms of the Martin boundary which is identified with the geometric Gromov boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信