V. T. Nguyen, Tra Huong Do, Duy Nhan Vu, T. T. Ngân
{"title":"Fe/C材料内微电解预处理高浓度焦化废水","authors":"V. T. Nguyen, Tra Huong Do, Duy Nhan Vu, T. T. Ngân","doi":"10.2478/pjct-2021-0015","DOIUrl":null,"url":null,"abstract":"Abstract Untreated coking effluent presents a great challenge for sustainable development of the steel industry and environment preservation. In this study, an internal micro-electrolysis method using Fe/C materials was employed for pretreatment of real coking wastewater with high mass concentration. The Fe/C materials were prepared by Fe powder and graphite powder; and the characteristics of surface morphology, structure, composition of the synthesized materials were examined by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS). The effects of factors namely dosage of Fe/C material, treatment time, initial pH and temperature were investigated via chemical oxygen demand (COD) and phenol removal efficiencies. Optimal treatment efficiency was attained at pH of 4, Fe/C dosage of 40 g/L, treatment time of 360 minutes and temperature of 25°C. After the internal electrolysis process, the values of COD, BOD5, and phenol of the wastewater were 6500, 4850 and 0.1 mg/L, respectively.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"23 1","pages":"41 - 46"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Internal Micro-electrolysis Using Fe/C Material for Pre-Treatment of Concentrated Coking Wastewater\",\"authors\":\"V. T. Nguyen, Tra Huong Do, Duy Nhan Vu, T. T. Ngân\",\"doi\":\"10.2478/pjct-2021-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Untreated coking effluent presents a great challenge for sustainable development of the steel industry and environment preservation. In this study, an internal micro-electrolysis method using Fe/C materials was employed for pretreatment of real coking wastewater with high mass concentration. The Fe/C materials were prepared by Fe powder and graphite powder; and the characteristics of surface morphology, structure, composition of the synthesized materials were examined by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS). The effects of factors namely dosage of Fe/C material, treatment time, initial pH and temperature were investigated via chemical oxygen demand (COD) and phenol removal efficiencies. Optimal treatment efficiency was attained at pH of 4, Fe/C dosage of 40 g/L, treatment time of 360 minutes and temperature of 25°C. After the internal electrolysis process, the values of COD, BOD5, and phenol of the wastewater were 6500, 4850 and 0.1 mg/L, respectively.\",\"PeriodicalId\":20324,\"journal\":{\"name\":\"Polish Journal of Chemical Technology\",\"volume\":\"23 1\",\"pages\":\"41 - 46\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Chemical Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pjct-2021-0015\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2021-0015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Internal Micro-electrolysis Using Fe/C Material for Pre-Treatment of Concentrated Coking Wastewater
Abstract Untreated coking effluent presents a great challenge for sustainable development of the steel industry and environment preservation. In this study, an internal micro-electrolysis method using Fe/C materials was employed for pretreatment of real coking wastewater with high mass concentration. The Fe/C materials were prepared by Fe powder and graphite powder; and the characteristics of surface morphology, structure, composition of the synthesized materials were examined by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS). The effects of factors namely dosage of Fe/C material, treatment time, initial pH and temperature were investigated via chemical oxygen demand (COD) and phenol removal efficiencies. Optimal treatment efficiency was attained at pH of 4, Fe/C dosage of 40 g/L, treatment time of 360 minutes and temperature of 25°C. After the internal electrolysis process, the values of COD, BOD5, and phenol of the wastewater were 6500, 4850 and 0.1 mg/L, respectively.
期刊介绍:
Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.