Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi
{"title":"TETER型环","authors":"Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi","doi":"10.1017/nmj.2022.18","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module \n$\\omega _R$\n . The trace of \n$\\omega _R$\n is the ideal \n$\\operatorname {tr}(\\omega _R)$\n of R which is the sum of those ideals \n$\\varphi (\\omega _R)$\n with \n${\\varphi \\in \\operatorname {Hom}_R(\\omega _R,R)}$\n . The smallest number s for which there exist \n$\\varphi _1, \\ldots , \\varphi _s \\in \\operatorname {Hom}_R(\\omega _R,R)$\n with \n$\\operatorname {tr}(\\omega _R)=\\varphi _1(\\omega _R) + \\cdots + \\varphi _s(\\omega _R)$\n is called the Teter number of R. We say that R is of Teter type if \n$s = 1$\n . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"248 1","pages":"1005 - 1033"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RINGS OF TETER TYPE\",\"authors\":\"Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi\",\"doi\":\"10.1017/nmj.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module \\n$\\\\omega _R$\\n . The trace of \\n$\\\\omega _R$\\n is the ideal \\n$\\\\operatorname {tr}(\\\\omega _R)$\\n of R which is the sum of those ideals \\n$\\\\varphi (\\\\omega _R)$\\n with \\n${\\\\varphi \\\\in \\\\operatorname {Hom}_R(\\\\omega _R,R)}$\\n . The smallest number s for which there exist \\n$\\\\varphi _1, \\\\ldots , \\\\varphi _s \\\\in \\\\operatorname {Hom}_R(\\\\omega _R,R)$\\n with \\n$\\\\operatorname {tr}(\\\\omega _R)=\\\\varphi _1(\\\\omega _R) + \\\\cdots + \\\\varphi _s(\\\\omega _R)$\\n is called the Teter number of R. We say that R is of Teter type if \\n$s = 1$\\n . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"248 1\",\"pages\":\"1005 - 1033\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.18\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.18","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module
$\omega _R$
. The trace of
$\omega _R$
is the ideal
$\operatorname {tr}(\omega _R)$
of R which is the sum of those ideals
$\varphi (\omega _R)$
with
${\varphi \in \operatorname {Hom}_R(\omega _R,R)}$
. The smallest number s for which there exist
$\varphi _1, \ldots , \varphi _s \in \operatorname {Hom}_R(\omega _R,R)$
with
$\operatorname {tr}(\omega _R)=\varphi _1(\omega _R) + \cdots + \varphi _s(\omega _R)$
is called the Teter number of R. We say that R is of Teter type if
$s = 1$
. It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.