TETER型环

IF 0.8 2区 数学 Q2 MATHEMATICS
Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi
{"title":"TETER型环","authors":"Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi","doi":"10.1017/nmj.2022.18","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module \n$\\omega _R$\n . The trace of \n$\\omega _R$\n is the ideal \n$\\operatorname {tr}(\\omega _R)$\n of R which is the sum of those ideals \n$\\varphi (\\omega _R)$\n with \n${\\varphi \\in \\operatorname {Hom}_R(\\omega _R,R)}$\n . The smallest number s for which there exist \n$\\varphi _1, \\ldots , \\varphi _s \\in \\operatorname {Hom}_R(\\omega _R,R)$\n with \n$\\operatorname {tr}(\\omega _R)=\\varphi _1(\\omega _R) + \\cdots + \\varphi _s(\\omega _R)$\n is called the Teter number of R. We say that R is of Teter type if \n$s = 1$\n . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"248 1","pages":"1005 - 1033"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RINGS OF TETER TYPE\",\"authors\":\"Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi\",\"doi\":\"10.1017/nmj.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module \\n$\\\\omega _R$\\n . The trace of \\n$\\\\omega _R$\\n is the ideal \\n$\\\\operatorname {tr}(\\\\omega _R)$\\n of R which is the sum of those ideals \\n$\\\\varphi (\\\\omega _R)$\\n with \\n${\\\\varphi \\\\in \\\\operatorname {Hom}_R(\\\\omega _R,R)}$\\n . The smallest number s for which there exist \\n$\\\\varphi _1, \\\\ldots , \\\\varphi _s \\\\in \\\\operatorname {Hom}_R(\\\\omega _R,R)$\\n with \\n$\\\\operatorname {tr}(\\\\omega _R)=\\\\varphi _1(\\\\omega _R) + \\\\cdots + \\\\varphi _s(\\\\omega _R)$\\n is called the Teter number of R. We say that R is of Teter type if \\n$s = 1$\\n . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"248 1\",\"pages\":\"1005 - 1033\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.18\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.18","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要设R是一个Cohen–Macaulay局部K-代数或具有正则模$\omega_R$的域K上的标准分次K-代数。$\omega_R$的迹是R的理想$\operatorname{tr}(\omega-R)$,它是那些理想$\varphi(\omega_R)$与${\varphi\in\operatorname的和{Hom}_R(ω_R,R)}$。存在$\varphi_1、\ldots、\varphi_s\in\operatorname的最小数字s{Hom}_R(\omega_R,R)$与$\operatorname{tr}(\omega _R)=\varphi_1(\omega _R)+\cdots+\varphi_s(\ω_R)$称为R的Teter数。结果表明,如果R一般是Gorenstein,则R不是Teter型。本文着重研究了零维分次和单次K-代数,并给出了这类代数的各种Teter型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RINGS OF TETER TYPE
Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module $\omega _R$ . The trace of $\omega _R$ is the ideal $\operatorname {tr}(\omega _R)$ of R which is the sum of those ideals $\varphi (\omega _R)$ with ${\varphi \in \operatorname {Hom}_R(\omega _R,R)}$ . The smallest number s for which there exist $\varphi _1, \ldots , \varphi _s \in \operatorname {Hom}_R(\omega _R,R)$ with $\operatorname {tr}(\omega _R)=\varphi _1(\omega _R) + \cdots + \varphi _s(\omega _R)$ is called the Teter number of R. We say that R is of Teter type if $s = 1$ . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信