周期有向图大小的最优下界

IF 1 Q1 MATHEMATICS
S. Kozerenko
{"title":"周期有向图大小的最优下界","authors":"S. Kozerenko","doi":"10.47443/dml.2023.015","DOIUrl":null,"url":null,"abstract":"A periodic digraph is the digraph associated with a periodic point of a continuous map from the unit interval to itself. This digraph encodes “covering” relation between minimal intervals in the corresponding orbit, which allows the application of purely combinatorial arguments in establishing results on the existence and co-existence of periods of periodic points (for example, in proving the famous Sharkovsky’s theorem). In this article, an optimal lower bound for the size of periodic digraphs is provided and thus some previous results of Pavlenko are tightened.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimal Lower Bound for the Size of Periodic Digraphs\",\"authors\":\"S. Kozerenko\",\"doi\":\"10.47443/dml.2023.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A periodic digraph is the digraph associated with a periodic point of a continuous map from the unit interval to itself. This digraph encodes “covering” relation between minimal intervals in the corresponding orbit, which allows the application of purely combinatorial arguments in establishing results on the existence and co-existence of periods of periodic points (for example, in proving the famous Sharkovsky’s theorem). In this article, an optimal lower bound for the size of periodic digraphs is provided and thus some previous results of Pavlenko are tightened.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

周期有向图是从单位区间到其本身的连续映射的周期点所关联的有向图。这个有向图编码了相应轨道上最小区间之间的“覆盖”关系,这允许应用纯组合论证来建立周期点周期的存在性和共存性的结果(例如,证明著名的Sharkovsky定理)。本文给出了周期有向图大小的一个最优下界,从而加强了Pavlenko先前的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Lower Bound for the Size of Periodic Digraphs
A periodic digraph is the digraph associated with a periodic point of a continuous map from the unit interval to itself. This digraph encodes “covering” relation between minimal intervals in the corresponding orbit, which allows the application of purely combinatorial arguments in establishing results on the existence and co-existence of periods of periodic points (for example, in proving the famous Sharkovsky’s theorem). In this article, an optimal lower bound for the size of periodic digraphs is provided and thus some previous results of Pavlenko are tightened.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信