{"title":"新不可压缩对称张量范畴的正特征","authors":"D. Benson, P. Etingof, V. Ostrik","doi":"10.1215/00127094-2022-0030","DOIUrl":null,"url":null,"abstract":"We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\\bf k$. If ${\\rm char}({\\bf k})=p>0$, we use this method to construct generalizations ${\\rm Ver}_{p^n}$, ${\\rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\\rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\\bf k)$ by the $n$-th Steinberg module, and ${\\rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(\\bf k)$-modules. We show that ${\\rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\\mathbb{Z}[2\\cos(2\\pi/p^n)]$, and that ${\\rm Ver}_{p^n}$ embeds into ${\\rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\\bf k$ admits a fiber functor to the union ${\\rm Ver}_{p^\\infty}$ of the nested sequence ${\\rm Ver}_{p}\\subset {\\rm Ver}_{p^2}\\subset\\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\\rm Ver}_p$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"New incompressible symmetric tensor categories in positive characteristic\",\"authors\":\"D. Benson, P. Etingof, V. Ostrik\",\"doi\":\"10.1215/00127094-2022-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\\\\bf k$. If ${\\\\rm char}({\\\\bf k})=p>0$, we use this method to construct generalizations ${\\\\rm Ver}_{p^n}$, ${\\\\rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\\\\rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\\\\bf k)$ by the $n$-th Steinberg module, and ${\\\\rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(\\\\bf k)$-modules. We show that ${\\\\rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\\\\mathbb{Z}[2\\\\cos(2\\\\pi/p^n)]$, and that ${\\\\rm Ver}_{p^n}$ embeds into ${\\\\rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\\\\bf k$ admits a fiber functor to the union ${\\\\rm Ver}_{p^\\\\infty}$ of the nested sequence ${\\\\rm Ver}_{p}\\\\subset {\\\\rm Ver}_{p^2}\\\\subset\\\\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\\\\rm Ver}_p$.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
New incompressible symmetric tensor categories in positive characteristic
We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\bf k$. If ${\rm char}({\bf k})=p>0$, we use this method to construct generalizations ${\rm Ver}_{p^n}$, ${\rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\bf k)$ by the $n$-th Steinberg module, and ${\rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(\bf k)$-modules. We show that ${\rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\mathbb{Z}[2\cos(2\pi/p^n)]$, and that ${\rm Ver}_{p^n}$ embeds into ${\rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\bf k$ admits a fiber functor to the union ${\rm Ver}_{p^\infty}$ of the nested sequence ${\rm Ver}_{p}\subset {\rm Ver}_{p^2}\subset\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\rm Ver}_p$.