新不可压缩对称张量范畴的正特征

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Benson, P. Etingof, V. Ostrik
{"title":"新不可压缩对称张量范畴的正特征","authors":"D. Benson, P. Etingof, V. Ostrik","doi":"10.1215/00127094-2022-0030","DOIUrl":null,"url":null,"abstract":"We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\\bf k$. If ${\\rm char}({\\bf k})=p>0$, we use this method to construct generalizations ${\\rm Ver}_{p^n}$, ${\\rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\\rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\\bf k)$ by the $n$-th Steinberg module, and ${\\rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(\\bf k)$-modules. We show that ${\\rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\\mathbb{Z}[2\\cos(2\\pi/p^n)]$, and that ${\\rm Ver}_{p^n}$ embeds into ${\\rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\\bf k$ admits a fiber functor to the union ${\\rm Ver}_{p^\\infty}$ of the nested sequence ${\\rm Ver}_{p}\\subset {\\rm Ver}_{p^2}\\subset\\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\\rm Ver}_p$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"New incompressible symmetric tensor categories in positive characteristic\",\"authors\":\"D. Benson, P. Etingof, V. Ostrik\",\"doi\":\"10.1215/00127094-2022-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\\\\bf k$. If ${\\\\rm char}({\\\\bf k})=p>0$, we use this method to construct generalizations ${\\\\rm Ver}_{p^n}$, ${\\\\rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\\\\rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\\\\bf k)$ by the $n$-th Steinberg module, and ${\\\\rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(\\\\bf k)$-modules. We show that ${\\\\rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\\\\mathbb{Z}[2\\\\cos(2\\\\pi/p^n)]$, and that ${\\\\rm Ver}_{p^n}$ embeds into ${\\\\rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\\\\bf k$ admits a fiber functor to the union ${\\\\rm Ver}_{p^\\\\infty}$ of the nested sequence ${\\\\rm Ver}_{p}\\\\subset {\\\\rm Ver}_{p^2}\\\\subset\\\\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\\\\rm Ver}_p$.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 18

摘要

提出了一种构造代数闭域上对称刚体单形Karoubian范畴的阿贝尔包络的方法 $\bf k$. 如果 ${\rm char}({\bf k})=p>0$,我们使用这种方法来构造泛化 ${\rm Ver}_{p^n}$, ${\rm Ver}_{p^n}^+$ 在arXiv:1807.05549中定义的不可压缩阿贝尔对称张量范畴 $p=2$ Gelfand-Kazhdan和Georgiev-Mathieu为 $n=1$. 即, ${\rm Ver}_{p^n}$ 可倾模的范畴的商的阿贝尔包络是否为 $SL_2(\bf k)$ 通过 $n$-斯坦伯格模块,和 ${\rm Ver}_{p^n}^+$ 它的子类别是由 $PGL_2(\bf k)$-modules。我们证明了 ${\rm Ver}_{p^n}$ 是特征还原吗? $p$ 特征为零的Verlinde编织张量范畴,解释了符号。我们详细地研究了这些类别的结构,并特别证明了它们对真正的切环进行了分类 $\mathbb{Z}[2\cos(2\pi/p^n)]$,还有 ${\rm Ver}_{p^n}$ 嵌入 ${\rm Ver}_{p^{n+1}}$. 我们推测每一个对称张量范畴的适度增长 $\bf k$ 允许一个纤维函子加入联合体 ${\rm Ver}_{p^\infty}$ 嵌套序列的 ${\rm Ver}_{p}\subset {\rm Ver}_{p^2}\subset\cdots$. 这将提供特征零点上的Deligne定理的类比,并推广了arXiv:1503.01492的结果,表明该猜想对融合范畴成立,并且纤维函子落在 ${\rm Ver}_p$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New incompressible symmetric tensor categories in positive characteristic
We propose a method of constructing abelian envelopes of symmetric rigid monoidal Karoubian categories over an algebraically closed field $\bf k$. If ${\rm char}({\bf k})=p>0$, we use this method to construct generalizations ${\rm Ver}_{p^n}$, ${\rm Ver}_{p^n}^+$ of the incompressible abelian symmetric tensor categories defined in arXiv:1807.05549 for $p=2$ and by Gelfand-Kazhdan and Georgiev-Mathieu for $n=1$. Namely, ${\rm Ver}_{p^n}$ is the abelian envelope of the quotient of the category of tilting modules for $SL_2(\bf k)$ by the $n$-th Steinberg module, and ${\rm Ver}_{p^n}^+$ is its subcategory generated by $PGL_2(\bf k)$-modules. We show that ${\rm Ver}_{p^n}$ are reductions to characteristic $p$ of Verlinde braided tensor categories in characteristic zero, which explains the notation. We study the structure of these categories in detail, and in particular show that they categorify the real cyclotomic rings $\mathbb{Z}[2\cos(2\pi/p^n)]$, and that ${\rm Ver}_{p^n}$ embeds into ${\rm Ver}_{p^{n+1}}$. We conjecture that every symmetric tensor category of moderate growth over $\bf k$ admits a fiber functor to the union ${\rm Ver}_{p^\infty}$ of the nested sequence ${\rm Ver}_{p}\subset {\rm Ver}_{p^2}\subset\cdots$. This would provide an analog of Deligne's theorem in characteristic zero and a generalization of the result of arXiv:1503.01492, which shows that this conjecture holds for fusion categories, and then moreover the fiber functor lands in ${\rm Ver}_p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信