{"title":"与若干退化多项式和数相关的退化斯特林数的一些恒等式","authors":"T. K. Kim, D. S. Kim","doi":"10.1134/S1061920823010041","DOIUrl":null,"url":null,"abstract":"<p> The aim of this paper is to investigate some properties, recurrence relations and identities involving degenerate Stirling numbers of both kinds associated with degenerate hyperharmonic numbers and also with degenerate Bernoulli, degenerate Euler, degenerate Bell, and degenerate Fubini polynomials. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers\",\"authors\":\"T. K. Kim, D. S. Kim\",\"doi\":\"10.1134/S1061920823010041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The aim of this paper is to investigate some properties, recurrence relations and identities involving degenerate Stirling numbers of both kinds associated with degenerate hyperharmonic numbers and also with degenerate Bernoulli, degenerate Euler, degenerate Bell, and degenerate Fubini polynomials. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823010041\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823010041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Some Identities Involving Degenerate Stirling Numbers Associated with Several Degenerate Polynomials and Numbers
The aim of this paper is to investigate some properties, recurrence relations and identities involving degenerate Stirling numbers of both kinds associated with degenerate hyperharmonic numbers and also with degenerate Bernoulli, degenerate Euler, degenerate Bell, and degenerate Fubini polynomials.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.