海藻酸水葫芦珠连续流生物吸附去除亚甲基蓝和结晶紫染料

Q2 Environmental Science
C. Mahamadi, E. Mawere
{"title":"海藻酸水葫芦珠连续流生物吸附去除亚甲基蓝和结晶紫染料","authors":"C. Mahamadi, E. Mawere","doi":"10.1080/23311843.2019.1594513","DOIUrl":null,"url":null,"abstract":"Abstract The effectiveness of continuous flow biosorption of methylene blue and crystal violet dyes from aqueous solution was investigated using water hyacinth immobilized in sodium alginate. Characterization of the biosorbent was carried out using Fourier Transform Infrared Spectrometer (FTIR) and scanning electron microscopy (SEM). The adsorption process was optimized for adsorbate flow rate, initial dye concentration, and bed depth at fixed pH 8 under room conditions. The SEM showed the presence of a macroporous structure, whilst FTIR confirmed the presence of amine and hydroxyl groups. Increasing linear flow rate and initial dye concentration reduced breakthrough time (tb) and exhaustion time (te), whilst the adsorption capacity at breakthrough point (qb) increased with initial dye concentration and column bed depth. The adsorption data fitted both the Bed Depth Service Time (BDST) and the Yoon–Nelson models, with a BDST model adsorption capacity per unit volume (No) value of 14.2 mg/L and a critical bed depth (Xo) of 2.23 cm obtained. Regeneration and reuse of adsorbent gave an adsorption efficiency above 80% for both dyes in the binary solution phase for 3-sorption-desoprtion cycles. Water hyacinth showed great potential as a low-cost, efficient and effective biosorbent for the purification of dye-contaminated wastewater.","PeriodicalId":45615,"journal":{"name":"Cogent Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311843.2019.1594513","citationCount":"5","resultStr":"{\"title\":\"Continuous flow biosorptive removal of methylene blue and crystal violet dyes using alginate–water hyacinth beads\",\"authors\":\"C. Mahamadi, E. Mawere\",\"doi\":\"10.1080/23311843.2019.1594513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effectiveness of continuous flow biosorption of methylene blue and crystal violet dyes from aqueous solution was investigated using water hyacinth immobilized in sodium alginate. Characterization of the biosorbent was carried out using Fourier Transform Infrared Spectrometer (FTIR) and scanning electron microscopy (SEM). The adsorption process was optimized for adsorbate flow rate, initial dye concentration, and bed depth at fixed pH 8 under room conditions. The SEM showed the presence of a macroporous structure, whilst FTIR confirmed the presence of amine and hydroxyl groups. Increasing linear flow rate and initial dye concentration reduced breakthrough time (tb) and exhaustion time (te), whilst the adsorption capacity at breakthrough point (qb) increased with initial dye concentration and column bed depth. The adsorption data fitted both the Bed Depth Service Time (BDST) and the Yoon–Nelson models, with a BDST model adsorption capacity per unit volume (No) value of 14.2 mg/L and a critical bed depth (Xo) of 2.23 cm obtained. Regeneration and reuse of adsorbent gave an adsorption efficiency above 80% for both dyes in the binary solution phase for 3-sorption-desoprtion cycles. Water hyacinth showed great potential as a low-cost, efficient and effective biosorbent for the purification of dye-contaminated wastewater.\",\"PeriodicalId\":45615,\"journal\":{\"name\":\"Cogent Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311843.2019.1594513\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311843.2019.1594513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311843.2019.1594513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 5

摘要

摘要利用海藻酸钠固定化水葫芦,研究了连续流动生物吸附水溶液中亚甲基蓝和结晶紫染料的效果。利用傅立叶变换红外光谱仪(FTIR)和扫描电子显微镜(SEM)对生物吸附剂进行了表征。在室温条件下,在固定pH 8下,对吸附质流速、初始染料浓度和床层深度进行了优化。SEM显示存在大孔结构,而FTIR证实存在胺和羟基。增加线性流速和初始染料浓度降低了穿透时间(tb)和耗尽时间(te),而穿透点(qb)的吸附容量随着初始染料浓度和柱床深度的增加而增加。吸附数据符合床层深度服务时间(BDST)和Yoon–Nelson模型,BDST模型每单位体积吸附能力(No)值为14.2 mg/L,临界床层深度(Xo)为2.23 cm。吸附剂的再生和再利用使两种染料在二元溶液相中的吸附效率在3次吸附-解吸循环中均超过80%。水葫芦作为一种低成本、高效、有效的生物吸附剂,在染料污染废水的净化中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous flow biosorptive removal of methylene blue and crystal violet dyes using alginate–water hyacinth beads
Abstract The effectiveness of continuous flow biosorption of methylene blue and crystal violet dyes from aqueous solution was investigated using water hyacinth immobilized in sodium alginate. Characterization of the biosorbent was carried out using Fourier Transform Infrared Spectrometer (FTIR) and scanning electron microscopy (SEM). The adsorption process was optimized for adsorbate flow rate, initial dye concentration, and bed depth at fixed pH 8 under room conditions. The SEM showed the presence of a macroporous structure, whilst FTIR confirmed the presence of amine and hydroxyl groups. Increasing linear flow rate and initial dye concentration reduced breakthrough time (tb) and exhaustion time (te), whilst the adsorption capacity at breakthrough point (qb) increased with initial dye concentration and column bed depth. The adsorption data fitted both the Bed Depth Service Time (BDST) and the Yoon–Nelson models, with a BDST model adsorption capacity per unit volume (No) value of 14.2 mg/L and a critical bed depth (Xo) of 2.23 cm obtained. Regeneration and reuse of adsorbent gave an adsorption efficiency above 80% for both dyes in the binary solution phase for 3-sorption-desoprtion cycles. Water hyacinth showed great potential as a low-cost, efficient and effective biosorbent for the purification of dye-contaminated wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Environmental Science
Cogent Environmental Science ENVIRONMENTAL SCIENCES-
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信