{"title":"整数上没有恩里克曲面","authors":"S. Schröer","doi":"10.4007/annals.2023.197.1.1","DOIUrl":null,"url":null,"abstract":"We show that there is no family of Enriques surfaces over the ring of integers. This extends non-existence results of Minkowski for families of finite etale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine for families of abelian varieties and more general smooth proper schemes with certain restrictions on Hodge numbers. Our main idea is to study the local system of numerical classes of invertible sheaves. Among other things, our result also hinges on the Weil Conjectures, Lang's classification of rational elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces due to Ekedahl and Shepherd-Barron, some recent results on the base of their versal deformation, Shioda's theory of Mordell--Weil lattices, and an extensive combinatorial study for the pairwise interaction of genus-one fibrations.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"There is no Enriques surface over the integers\",\"authors\":\"S. Schröer\",\"doi\":\"10.4007/annals.2023.197.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there is no family of Enriques surfaces over the ring of integers. This extends non-existence results of Minkowski for families of finite etale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine for families of abelian varieties and more general smooth proper schemes with certain restrictions on Hodge numbers. Our main idea is to study the local system of numerical classes of invertible sheaves. Among other things, our result also hinges on the Weil Conjectures, Lang's classification of rational elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces due to Ekedahl and Shepherd-Barron, some recent results on the base of their versal deformation, Shioda's theory of Mordell--Weil lattices, and an extensive combinatorial study for the pairwise interaction of genus-one fibrations.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.197.1.1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.1.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that there is no family of Enriques surfaces over the ring of integers. This extends non-existence results of Minkowski for families of finite etale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine for families of abelian varieties and more general smooth proper schemes with certain restrictions on Hodge numbers. Our main idea is to study the local system of numerical classes of invertible sheaves. Among other things, our result also hinges on the Weil Conjectures, Lang's classification of rational elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces due to Ekedahl and Shepherd-Barron, some recent results on the base of their versal deformation, Shioda's theory of Mordell--Weil lattices, and an extensive combinatorial study for the pairwise interaction of genus-one fibrations.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.