整数上没有恩里克曲面

IF 5.7 1区 数学 Q1 MATHEMATICS
S. Schröer
{"title":"整数上没有恩里克曲面","authors":"S. Schröer","doi":"10.4007/annals.2023.197.1.1","DOIUrl":null,"url":null,"abstract":"We show that there is no family of Enriques surfaces over the ring of integers. This extends non-existence results of Minkowski for families of finite etale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine for families of abelian varieties and more general smooth proper schemes with certain restrictions on Hodge numbers. Our main idea is to study the local system of numerical classes of invertible sheaves. Among other things, our result also hinges on the Weil Conjectures, Lang's classification of rational elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces due to Ekedahl and Shepherd-Barron, some recent results on the base of their versal deformation, Shioda's theory of Mordell--Weil lattices, and an extensive combinatorial study for the pairwise interaction of genus-one fibrations.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"There is no Enriques surface over the integers\",\"authors\":\"S. Schröer\",\"doi\":\"10.4007/annals.2023.197.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there is no family of Enriques surfaces over the ring of integers. This extends non-existence results of Minkowski for families of finite etale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine for families of abelian varieties and more general smooth proper schemes with certain restrictions on Hodge numbers. Our main idea is to study the local system of numerical classes of invertible sheaves. Among other things, our result also hinges on the Weil Conjectures, Lang's classification of rational elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces due to Ekedahl and Shepherd-Barron, some recent results on the base of their versal deformation, Shioda's theory of Mordell--Weil lattices, and an extensive combinatorial study for the pairwise interaction of genus-one fibrations.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2020-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.197.1.1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.1.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了整数环上不存在Enriques曲面族。推广了Minkowski关于有限格式族的不存在性结果,推广了Tate和Ogg关于椭圆曲线族的不存在性结果,推广了Fontaine关于阿贝变体族的不存在性结果,推广了对Hodge数有一定限制的更一般光滑适当格式的不存在性结果。我们的主要思想是研究可逆轮系数值类的局部系统。除此之外,我们的结果还取决于Weil猜想,Lang在特征二中对合理椭圆曲面的分类,Ekedahl和Shepherd-Barron引起的特殊Enriques曲面理论,基于他们的通用变形的一些最新结果,Shioda的Mordell- Weil晶格理论,以及对第一类纤维的配对相互作用的广泛组合研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
There is no Enriques surface over the integers
We show that there is no family of Enriques surfaces over the ring of integers. This extends non-existence results of Minkowski for families of finite etale schemes, of Tate and Ogg for families of elliptic curves, and of Fontaine for families of abelian varieties and more general smooth proper schemes with certain restrictions on Hodge numbers. Our main idea is to study the local system of numerical classes of invertible sheaves. Among other things, our result also hinges on the Weil Conjectures, Lang's classification of rational elliptic surfaces in characteristic two, the theory of exceptional Enriques surfaces due to Ekedahl and Shepherd-Barron, some recent results on the base of their versal deformation, Shioda's theory of Mordell--Weil lattices, and an extensive combinatorial study for the pairwise interaction of genus-one fibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信