{"title":"包含PMU电压和电流相量的鲁棒估计器","authors":"Farhan Ahmad, D. Minerals, I. Habiballah","doi":"10.30538/PSRP-EASL2019.0015","DOIUrl":null,"url":null,"abstract":"State Estimation is the backbone of modern electric power system and is used by almost all Energy Management Systems (EMS) in the world to ensure the real-time monitoring and secure operation of a power system. Phasor Measurement Unit (PMU) is most popular meter in today’s electrical power industry because of its high refresh rates and measurement accuracy. Meanwhile, state estimation with only PMUs is not practical because of the very high initial installation cost. Consequently, the use of PMU meters along with conventional Supervisory Control and Data Acquisition (SCADA) meters can improve the performance of the state estimation. In this paper, phasor measurements (voltage and current phasors) are incorporated in two robust estimators: Weighted Least Absolute Value (WLAV) and Least Measurement Rejected (LMR). Further, we have investigated the importance of locating PMUs to save cost and improve the performance of state estimation. The performance of these two estimators after incorporating voltage and current phasors is investigated in terms of estimation accuracy of state variables and computational efficiency in the presence of different bad-data scenarios on IEEE-30 and IEEE-118 bus systems.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimators incorporating voltage and current phasors from PMUs\",\"authors\":\"Farhan Ahmad, D. Minerals, I. Habiballah\",\"doi\":\"10.30538/PSRP-EASL2019.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State Estimation is the backbone of modern electric power system and is used by almost all Energy Management Systems (EMS) in the world to ensure the real-time monitoring and secure operation of a power system. Phasor Measurement Unit (PMU) is most popular meter in today’s electrical power industry because of its high refresh rates and measurement accuracy. Meanwhile, state estimation with only PMUs is not practical because of the very high initial installation cost. Consequently, the use of PMU meters along with conventional Supervisory Control and Data Acquisition (SCADA) meters can improve the performance of the state estimation. In this paper, phasor measurements (voltage and current phasors) are incorporated in two robust estimators: Weighted Least Absolute Value (WLAV) and Least Measurement Rejected (LMR). Further, we have investigated the importance of locating PMUs to save cost and improve the performance of state estimation. The performance of these two estimators after incorporating voltage and current phasors is investigated in terms of estimation accuracy of state variables and computational efficiency in the presence of different bad-data scenarios on IEEE-30 and IEEE-118 bus systems.\",\"PeriodicalId\":11518,\"journal\":{\"name\":\"Engineering and Applied Science Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Applied Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/PSRP-EASL2019.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/PSRP-EASL2019.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust estimators incorporating voltage and current phasors from PMUs
State Estimation is the backbone of modern electric power system and is used by almost all Energy Management Systems (EMS) in the world to ensure the real-time monitoring and secure operation of a power system. Phasor Measurement Unit (PMU) is most popular meter in today’s electrical power industry because of its high refresh rates and measurement accuracy. Meanwhile, state estimation with only PMUs is not practical because of the very high initial installation cost. Consequently, the use of PMU meters along with conventional Supervisory Control and Data Acquisition (SCADA) meters can improve the performance of the state estimation. In this paper, phasor measurements (voltage and current phasors) are incorporated in two robust estimators: Weighted Least Absolute Value (WLAV) and Least Measurement Rejected (LMR). Further, we have investigated the importance of locating PMUs to save cost and improve the performance of state estimation. The performance of these two estimators after incorporating voltage and current phasors is investigated in terms of estimation accuracy of state variables and computational efficiency in the presence of different bad-data scenarios on IEEE-30 and IEEE-118 bus systems.