K^2 = 6的燃烧曲面上的对数正则阈值

IF 0.6 4区 数学 Q3 MATHEMATICS
In-kyun Kim, Y. Shin
{"title":"K^2 = 6的燃烧曲面上的对数正则阈值","authors":"In-kyun Kim, Y. Shin","doi":"10.11650/tjm/220605","DOIUrl":null,"url":null,"abstract":". Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors\",\"authors\":\"In-kyun Kim, Y. Shin\",\"doi\":\"10.11650/tjm/220605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220605\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220605","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 设S为一个Burniat曲面,其中K 2 S = 6, φ为S的双标准映射。本文通过Klein群G,给出了由φ诱导的S的多正则次线性系统的对数正则阈值的最优下界。实际上,对于正偶数m,一个不变量(正则表达式)的成员的对数正则阈值。逆不变)部分| mK S |大于或等于1 / (2 m)(相对于。1 / (2 m−2))。对于正奇数m,不变量(正则表达式)的成员的对数正则阈值。逆不变)部分| mK S |大于等于1 / (2 m−5)(p < 0.05)。1 / (2m))。不等式都是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors
. Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信