{"title":"K^2 = 6的燃烧曲面上的对数正则阈值","authors":"In-kyun Kim, Y. Shin","doi":"10.11650/tjm/220605","DOIUrl":null,"url":null,"abstract":". Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors\",\"authors\":\"In-kyun Kim, Y. Shin\",\"doi\":\"10.11650/tjm/220605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
. 设S为一个Burniat曲面,其中K 2 S = 6, φ为S的双标准映射。本文通过Klein群G,给出了由φ诱导的S的多正则次线性系统的对数正则阈值的最优下界。实际上,对于正偶数m,一个不变量(正则表达式)的成员的对数正则阈值。逆不变)部分| mK S |大于或等于1 / (2 m)(相对于。1 / (2 m−2))。对于正奇数m,不变量(正则表达式)的成员的对数正则阈值。逆不变)部分| mK S |大于等于1 / (2 m−5)(p < 0.05)。1 / (2m))。不等式都是最优的。
Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors
. Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.