量子力学中的分数演化

Q1 Mathematics
A. Iomin
{"title":"量子力学中的分数演化","authors":"A. Iomin","doi":"10.1016/j.csfx.2018.100001","DOIUrl":null,"url":null,"abstract":"<div><p>Fractional time (non-unitary) quantum mechanics is discussed for both Schrödinger and Heisenberg representations of quantum mechanics. A correct form of the fractional Schrödinger equation is elucidated. A generic regularization procedure for the fractional Heisenberg equations of motion is suggested that makes it possible to solve these nonlinear equations in the framework of photonic and spin coherent states consideration.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"1 ","pages":"Article 100001"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2018.100001","citationCount":"23","resultStr":"{\"title\":\"Fractional evolution in quantum mechanics\",\"authors\":\"A. Iomin\",\"doi\":\"10.1016/j.csfx.2018.100001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fractional time (non-unitary) quantum mechanics is discussed for both Schrödinger and Heisenberg representations of quantum mechanics. A correct form of the fractional Schrödinger equation is elucidated. A generic regularization procedure for the fractional Heisenberg equations of motion is suggested that makes it possible to solve these nonlinear equations in the framework of photonic and spin coherent states consideration.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"1 \",\"pages\":\"Article 100001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2018.100001\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054418300010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054418300010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 23

摘要

分数时间(非酉)量子力学讨论了Schrödinger和海森堡表示的量子力学。给出了分数阶Schrödinger方程的正确形式。提出了分数阶海森堡运动方程的一般正则化方法,使得在考虑光子和自旋相干态的框架下求解这些非线性方程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional evolution in quantum mechanics

Fractional time (non-unitary) quantum mechanics is discussed for both Schrödinger and Heisenberg representations of quantum mechanics. A correct form of the fractional Schrödinger equation is elucidated. A generic regularization procedure for the fractional Heisenberg equations of motion is suggested that makes it possible to solve these nonlinear equations in the framework of photonic and spin coherent states consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信