λ-简单半环的分配格

IF 0.4 Q4 MATHEMATICS
T. Mondal
{"title":"λ-简单半环的分配格","authors":"T. Mondal","doi":"10.52547/ijmsi.17.1.47","DOIUrl":null,"url":null,"abstract":". In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left k -radicals Λ( a ) = { x ∈ S | a l −→ ∞ x } induced by the transitive closure l −→ ∞ of the relation l −→ which induce the equivalence relation λ . Again non-transitivity of l −→ yields an expanding family { l −→ n } of binary relations which associate subsets Λ n ( a ) for all a ∈ S , which again induces an equivalence relation λ n . We also define λ ( λ n )-simple semirings, and characterize the semirings which are distributive lattices of λ ( λ n )-simple semirings.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributive Lattices of λ-simple Semirings\",\"authors\":\"T. Mondal\",\"doi\":\"10.52547/ijmsi.17.1.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left k -radicals Λ( a ) = { x ∈ S | a l −→ ∞ x } induced by the transitive closure l −→ ∞ of the relation l −→ which induce the equivalence relation λ . Again non-transitivity of l −→ yields an expanding family { l −→ n } of binary relations which associate subsets Λ n ( a ) for all a ∈ S , which again induces an equivalence relation λ n . We also define λ ( λ n )-simple semirings, and characterize the semirings which are distributive lattices of λ ( λ n )-simple semirings.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/ijmsi.17.1.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了具有半格加性还原的半环的分解。对于,我们引入了主左k-根∧(a)={x∈S|al-→ ∞ x}由传递闭包l−→ ∞ 关系式l−→ 从而导出等价关系λ。l−的非及物性→ 产生一个扩展的族{l−→ n}的二元关系,该二元关系关联所有a∈S的子集∧n(a),这再次导出等价关系λn。我们还定义了λ(λn)-简单半环,并刻画了作为λ(λn)-简单半环的分配格的半环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributive Lattices of λ-simple Semirings
. In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left k -radicals Λ( a ) = { x ∈ S | a l −→ ∞ x } induced by the transitive closure l −→ ∞ of the relation l −→ which induce the equivalence relation λ . Again non-transitivity of l −→ yields an expanding family { l −→ n } of binary relations which associate subsets Λ n ( a ) for all a ∈ S , which again induces an equivalence relation λ n . We also define λ ( λ n )-simple semirings, and characterize the semirings which are distributive lattices of λ ( λ n )-simple semirings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信