单倍体酵母的自发多倍体率

Q3 Agricultural and Biological Sciences
Yu. V. Andreychuk, A. Zhuk, E. Tarakhovskaya, S. Inge-Vechtomov, E. Stepchenkova
{"title":"单倍体酵母的自发多倍体率","authors":"Yu. V. Andreychuk, A. Zhuk, E. Tarakhovskaya, S. Inge-Vechtomov, E. Stepchenkova","doi":"10.21638/spbu03.2022.202","DOIUrl":null,"url":null,"abstract":"Polyploidization is involved in a variety of biological processes. It is one of the principal mechanisms of new species formation since it provides material for gene diversification and subsequent selection. Multiple cases of polyploidization were registered in different branches of the evolutionary tree of eukaryotes. Besides its role in evolution, polyploidization affects gene expression in living cells: pathological genome duplications often happen in cancer cells. The mechanisms and consequences of polyploidization are being studied extensively. However, quantitative determination of the polyploidization rate is challenging due to its low frequency and the absence of selective genetic markers that would phenotypically distinguish between haploids and polyploids. Our work describes a robust and straightforward method for discriminating haploid and polyploid states in the yeast Saccharomyces cerevisiae, a model organism for studying different aspects of polyploidization. The measurement of polyploidization rate showed that in yeast cells this process is mainly caused by autodiploidization rather than mating-type switching followed by hybridization.","PeriodicalId":8998,"journal":{"name":"Biological Communications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rate of spontaneous polyploidization in haploid yeast Saccharomyces cerevisiae\",\"authors\":\"Yu. V. Andreychuk, A. Zhuk, E. Tarakhovskaya, S. Inge-Vechtomov, E. Stepchenkova\",\"doi\":\"10.21638/spbu03.2022.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyploidization is involved in a variety of biological processes. It is one of the principal mechanisms of new species formation since it provides material for gene diversification and subsequent selection. Multiple cases of polyploidization were registered in different branches of the evolutionary tree of eukaryotes. Besides its role in evolution, polyploidization affects gene expression in living cells: pathological genome duplications often happen in cancer cells. The mechanisms and consequences of polyploidization are being studied extensively. However, quantitative determination of the polyploidization rate is challenging due to its low frequency and the absence of selective genetic markers that would phenotypically distinguish between haploids and polyploids. Our work describes a robust and straightforward method for discriminating haploid and polyploid states in the yeast Saccharomyces cerevisiae, a model organism for studying different aspects of polyploidization. The measurement of polyploidization rate showed that in yeast cells this process is mainly caused by autodiploidization rather than mating-type switching followed by hybridization.\",\"PeriodicalId\":8998,\"journal\":{\"name\":\"Biological Communications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/spbu03.2022.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/spbu03.2022.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

多倍体化涉及多种生物过程。它是新物种形成的主要机制之一,因为它为基因多样化和随后的选择提供了材料。在真核生物进化树的不同分支中记录了多种多倍体现象。除了在进化中发挥作用外,多倍体化还影响活细胞中的基因表达:病理性基因组复制经常发生在癌细胞中。多倍体化的机制和后果正在被广泛研究。然而,多倍体率的定量测定是具有挑战性的,因为它的频率低,并且缺乏选择性的遗传标记,可以在表型上区分单倍体和多倍体。我们的工作描述了一种强大而直接的方法来区分酵母的单倍体和多倍体状态,酵母是研究多倍体不同方面的模式生物。多倍体化率的测定表明,酵母细胞多倍体化主要是由自身二倍体化引起的,而不是由杂交后的交配型转换引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rate of spontaneous polyploidization in haploid yeast Saccharomyces cerevisiae
Polyploidization is involved in a variety of biological processes. It is one of the principal mechanisms of new species formation since it provides material for gene diversification and subsequent selection. Multiple cases of polyploidization were registered in different branches of the evolutionary tree of eukaryotes. Besides its role in evolution, polyploidization affects gene expression in living cells: pathological genome duplications often happen in cancer cells. The mechanisms and consequences of polyploidization are being studied extensively. However, quantitative determination of the polyploidization rate is challenging due to its low frequency and the absence of selective genetic markers that would phenotypically distinguish between haploids and polyploids. Our work describes a robust and straightforward method for discriminating haploid and polyploid states in the yeast Saccharomyces cerevisiae, a model organism for studying different aspects of polyploidization. The measurement of polyploidization rate showed that in yeast cells this process is mainly caused by autodiploidization rather than mating-type switching followed by hybridization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Communications
Biological Communications Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.70
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信