非协调有限元法三种后验误差估计的数值比较

Q3 Mathematics
B. Achchab, A. Agouzal, K. Bouihat, A. Majdoubi
{"title":"非协调有限元法三种后验误差估计的数值比较","authors":"B. Achchab, A. Agouzal, K. Bouihat, A. Majdoubi","doi":"10.2478/mjpaa-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose to compare three a posteriori error estimators namely equilibrated, star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The numerical results are presented to compare the performance of the three estimators in an adaptive refinement strategy.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical comparison of three a posteriori error estimators for nonconforming finite element method\",\"authors\":\"B. Achchab, A. Agouzal, K. Bouihat, A. Majdoubi\",\"doi\":\"10.2478/mjpaa-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose to compare three a posteriori error estimators namely equilibrated, star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The numerical results are presented to compare the performance of the three estimators in an adaptive refinement strategy.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们提出比较Poisson问题和Stokes问题的三种后验误差估计量,即平衡的、基于星的和基于残差的后验误差估计器,它们具有最低阶Crouzeix-Raviart有限元离散化。给出了数值结果,以比较自适应细化策略中三种估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical comparison of three a posteriori error estimators for nonconforming finite element method
Abstract In this paper, we propose to compare three a posteriori error estimators namely equilibrated, star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The numerical results are presented to compare the performance of the three estimators in an adaptive refinement strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信