{"title":"非协调有限元法三种后验误差估计的数值比较","authors":"B. Achchab, A. Agouzal, K. Bouihat, A. Majdoubi","doi":"10.2478/mjpaa-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose to compare three a posteriori error estimators namely equilibrated, star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The numerical results are presented to compare the performance of the three estimators in an adaptive refinement strategy.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"1 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical comparison of three a posteriori error estimators for nonconforming finite element method\",\"authors\":\"B. Achchab, A. Agouzal, K. Bouihat, A. Majdoubi\",\"doi\":\"10.2478/mjpaa-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose to compare three a posteriori error estimators namely equilibrated, star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The numerical results are presented to compare the performance of the three estimators in an adaptive refinement strategy.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Numerical comparison of three a posteriori error estimators for nonconforming finite element method
Abstract In this paper, we propose to compare three a posteriori error estimators namely equilibrated, star-based and residual based for the Poisson problem and the Stokes problem with lowest-order Crouzeix-Raviart finite element discretization. The numerical results are presented to compare the performance of the three estimators in an adaptive refinement strategy.