{"title":"grothendieck - teichm<e:1> ller群的组合Belyi Cuspidalization和算术子商","authors":"Shota Tsujimura","doi":"10.4171/prims/56-4-5","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a certain combinatorial version of the theory of Belyi cuspidalization developed by Mochizuki. Write Q ⊆ C for the subfield of algebraic numbers ∈ C. We then apply this theory of combinatorial Belyi cuspidalization to certain natural closed subgroups of the Grothendieck-Teichmüller group associated to the field of p-adic numbers [where p is a prime number] and to stably ×μ-indivisible subfields of Q, i.e., subfields for which every finite field extension satisfies the property that every nonzero divisible element in the field extension is a root of unity. 2010 Mathematics Subject Classification: Primary 14H30.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-4-5","citationCount":"8","resultStr":"{\"title\":\"Combinatorial Belyi Cuspidalization and Arithmetic Subquotients of the Grothendieck–Teichmüller Group\",\"authors\":\"Shota Tsujimura\",\"doi\":\"10.4171/prims/56-4-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a certain combinatorial version of the theory of Belyi cuspidalization developed by Mochizuki. Write Q ⊆ C for the subfield of algebraic numbers ∈ C. We then apply this theory of combinatorial Belyi cuspidalization to certain natural closed subgroups of the Grothendieck-Teichmüller group associated to the field of p-adic numbers [where p is a prime number] and to stably ×μ-indivisible subfields of Q, i.e., subfields for which every finite field extension satisfies the property that every nonzero divisible element in the field extension is a root of unity. 2010 Mathematics Subject Classification: Primary 14H30.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/prims/56-4-5\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/56-4-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-4-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Combinatorial Belyi Cuspidalization and Arithmetic Subquotients of the Grothendieck–Teichmüller Group
In this paper, we develop a certain combinatorial version of the theory of Belyi cuspidalization developed by Mochizuki. Write Q ⊆ C for the subfield of algebraic numbers ∈ C. We then apply this theory of combinatorial Belyi cuspidalization to certain natural closed subgroups of the Grothendieck-Teichmüller group associated to the field of p-adic numbers [where p is a prime number] and to stably ×μ-indivisible subfields of Q, i.e., subfields for which every finite field extension satisfies the property that every nonzero divisible element in the field extension is a root of unity. 2010 Mathematics Subject Classification: Primary 14H30.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.