作为物理结构的多重传递李变换群

V. Kyrov
{"title":"作为物理结构的多重传递李变换群","authors":"V. Kyrov","doi":"10.33048/mattrudy.2021.24.206","DOIUrl":null,"url":null,"abstract":"Abstract We establish a connection between physical structures and Lie groups and prove that each physical structure of rank $$(n+1,2)$$ , $$n\\in \\mathbb {N} $$ , on a smooth manifold is isotopic to an almost $$n $$ -transitive Lie group of transformations. We also prove that each almost $$n$$ -transitive Lie group of transformations is isotopic to a physical structure of rank $$(n+1,2) $$ .","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"32 1","pages":"129-144"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiply Transitive Lie Group of Transformations as a Physical Structure\",\"authors\":\"V. Kyrov\",\"doi\":\"10.33048/mattrudy.2021.24.206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish a connection between physical structures and Lie groups and prove that each physical structure of rank $$(n+1,2)$$ , $$n\\\\in \\\\mathbb {N} $$ , on a smooth manifold is isotopic to an almost $$n $$ -transitive Lie group of transformations. We also prove that each almost $$n$$ -transitive Lie group of transformations is isotopic to a physical structure of rank $$(n+1,2) $$ .\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":\"32 1\",\"pages\":\"129-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/mattrudy.2021.24.206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/mattrudy.2021.24.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要建立了物理结构与李群之间的联系,并证明了光滑流形上阶为$$(n+1,2)$$, $$n\in \mathbb {N} $$的每个物理结构都是一个几乎$$n $$ -传递李群的同位素。我们还证明了每一个变换的几乎$$n$$ -传递李群都是一个阶为$$(n+1,2) $$的物理结构的同位素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiply Transitive Lie Group of Transformations as a Physical Structure
Abstract We establish a connection between physical structures and Lie groups and prove that each physical structure of rank $$(n+1,2)$$ , $$n\in \mathbb {N} $$ , on a smooth manifold is isotopic to an almost $$n $$ -transitive Lie group of transformations. We also prove that each almost $$n$$ -transitive Lie group of transformations is isotopic to a physical structure of rank $$(n+1,2) $$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信