P. Vejjanugraha, K. Kotani, W. Kongprawechnon, T. Kondo, K. Tungpimolrut
{"title":"基于CT图像对非均匀运动估计的三维主动轮廓法肺部疾病自动筛查","authors":"P. Vejjanugraha, K. Kotani, W. Kongprawechnon, T. Kondo, K. Tungpimolrut","doi":"10.48048/WJST.2021.10573","DOIUrl":null,"url":null,"abstract":"Lung diseases are now the third leading cause of death worldwide because of the many risk factors we are exposed to daily, such as air pollution, tobacco use, viruses (such as COVID-19), and bacteria. This work introduces a new approach of the 3D Active Contour Model (3D ACM) to estimate an inhomogeneous motion of lungs, which can be used to analyze lung disease patterns using a hierarchical predictive model. The biophysical model of lungs consists of End Expiratory (EE) and End Inspiratory (EI) models, generated by high-resolution computed tomography images (HRCT). A proposed technique uses the 3D ACM to estimate the velocity vector by using the corresponding points on the parametric surface model of the EE model to the EI model. The external energy from the EI models is the external force that pushes the 3D parametric surface to reach the boundary. The external forces, such as the balloon force and Gradient Vector Flow (GVF), were adjusted adaptively based on the Zaratio which was calculated from the ratio of the maximum value of EI to EE on the Z axis. Next, the feature representation is studied and evaluated based on the lung structure, separated into five lobes. The stepwise regression, Support Vector Machine (SVM), and Artificial Neural Network (ANN) techniques are applied to classify the lung diseases into normal, obstructive lung, and restrictive lung diseases. In conclusion, the inhomogeneous motion pattern of lungs integrated with medical-based knowledge can be used to analyze lung diseases by differentiating normal and abnormal motion patterns and separating restrictive and obstructive lung diseases. [ABSTRACT FROM AUTHOR] Copyright of Walailak Journal of Science & Technology is the property of Walailak Journal of Science & Technology and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)","PeriodicalId":38275,"journal":{"name":"Walailak Journal of Science and Technology","volume":"18 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Screening of Lung Diseases by 3D Active Contour Method for Inhomogeneous Motion Estimation in CT Image Pairs\",\"authors\":\"P. Vejjanugraha, K. Kotani, W. Kongprawechnon, T. Kondo, K. Tungpimolrut\",\"doi\":\"10.48048/WJST.2021.10573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung diseases are now the third leading cause of death worldwide because of the many risk factors we are exposed to daily, such as air pollution, tobacco use, viruses (such as COVID-19), and bacteria. This work introduces a new approach of the 3D Active Contour Model (3D ACM) to estimate an inhomogeneous motion of lungs, which can be used to analyze lung disease patterns using a hierarchical predictive model. The biophysical model of lungs consists of End Expiratory (EE) and End Inspiratory (EI) models, generated by high-resolution computed tomography images (HRCT). A proposed technique uses the 3D ACM to estimate the velocity vector by using the corresponding points on the parametric surface model of the EE model to the EI model. The external energy from the EI models is the external force that pushes the 3D parametric surface to reach the boundary. The external forces, such as the balloon force and Gradient Vector Flow (GVF), were adjusted adaptively based on the Zaratio which was calculated from the ratio of the maximum value of EI to EE on the Z axis. Next, the feature representation is studied and evaluated based on the lung structure, separated into five lobes. The stepwise regression, Support Vector Machine (SVM), and Artificial Neural Network (ANN) techniques are applied to classify the lung diseases into normal, obstructive lung, and restrictive lung diseases. In conclusion, the inhomogeneous motion pattern of lungs integrated with medical-based knowledge can be used to analyze lung diseases by differentiating normal and abnormal motion patterns and separating restrictive and obstructive lung diseases. [ABSTRACT FROM AUTHOR] Copyright of Walailak Journal of Science & Technology is the property of Walailak Journal of Science & Technology and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)\",\"PeriodicalId\":38275,\"journal\":{\"name\":\"Walailak Journal of Science and Technology\",\"volume\":\"18 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Walailak Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48048/WJST.2021.10573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Walailak Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48048/WJST.2021.10573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
Automatic Screening of Lung Diseases by 3D Active Contour Method for Inhomogeneous Motion Estimation in CT Image Pairs
Lung diseases are now the third leading cause of death worldwide because of the many risk factors we are exposed to daily, such as air pollution, tobacco use, viruses (such as COVID-19), and bacteria. This work introduces a new approach of the 3D Active Contour Model (3D ACM) to estimate an inhomogeneous motion of lungs, which can be used to analyze lung disease patterns using a hierarchical predictive model. The biophysical model of lungs consists of End Expiratory (EE) and End Inspiratory (EI) models, generated by high-resolution computed tomography images (HRCT). A proposed technique uses the 3D ACM to estimate the velocity vector by using the corresponding points on the parametric surface model of the EE model to the EI model. The external energy from the EI models is the external force that pushes the 3D parametric surface to reach the boundary. The external forces, such as the balloon force and Gradient Vector Flow (GVF), were adjusted adaptively based on the Zaratio which was calculated from the ratio of the maximum value of EI to EE on the Z axis. Next, the feature representation is studied and evaluated based on the lung structure, separated into five lobes. The stepwise regression, Support Vector Machine (SVM), and Artificial Neural Network (ANN) techniques are applied to classify the lung diseases into normal, obstructive lung, and restrictive lung diseases. In conclusion, the inhomogeneous motion pattern of lungs integrated with medical-based knowledge can be used to analyze lung diseases by differentiating normal and abnormal motion patterns and separating restrictive and obstructive lung diseases. [ABSTRACT FROM AUTHOR] Copyright of Walailak Journal of Science & Technology is the property of Walailak Journal of Science & Technology and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
期刊介绍:
The Walailak Journal of Science and Technology (Walailak J. Sci. & Tech. or WJST), is a peer-reviewed journal covering all areas of science and technology, launched in 2004. It is published 12 Issues (Monthly) by the Institute of Research and Innovation of Walailak University. The scope of the journal includes the following areas of research : - Natural Sciences: Biochemistry, Chemical Engineering, Chemistry, Materials Science, Mathematics, Molecular Biology, Physics and Astronomy. -Life Sciences: Allied Health Sciences, Biomedical Sciences, Dentistry, Genetics, Immunology and Microbiology, Medicine, Neuroscience, Nursing, Pharmaceutics, Psychology, Public Health, Tropical Medicine, Veterinary. -Applied Sciences: Agricultural, Aquaculture, Biotechnology, Computer Science, Cybernetics, Earth and Planetary, Energy, Engineering, Environmental, Food Science, Information Technology, Meat Science, Nanotechnology, Plant Sciences, Systemics