阿贝尔范畴中的Frobenius对

IF 0.5 4区 数学
Víctor Becerril, Octavio Mendoza, Marco A. Pérez, Valente Santiago
{"title":"阿贝尔范畴中的Frobenius对","authors":"Víctor Becerril,&nbsp;Octavio Mendoza,&nbsp;Marco A. Pérez,&nbsp;Valente Santiago","doi":"10.1007/s40062-018-0208-4","DOIUrl":null,"url":null,"abstract":"<p>We revisit Auslander–Buchweitz approximation theory and find some relations with cotorsion pairs and model category structures. From the notion of relative generators, we introduce the concept of left Frobenius pairs <span>\\(({\\mathcal {X}},\\omega )\\)</span> in an abelian category <span>\\({\\mathcal {C}}\\)</span>. We show how to construct from <span>\\(({\\mathcal {X}},\\omega )\\)</span> a projective exact model structure on <span>\\({\\mathcal {X}}^\\wedge \\)</span>, the subcategory of objects in <span>\\({\\mathcal {C}}\\)</span> with finite <span>\\({\\mathcal {X}}\\)</span>-resolution dimension, via cotorsion pairs relative to a thick subcategory of <span>\\({\\mathcal {C}}\\)</span>. We also establish correspondences between these model structures, relative cotorsion pairs, Frobenius pairs, and Auslander–Buchweitz contexts. Some applications of this theory are given in the context of Gorenstein homological algebra, and connections with perfect cotorsion pairs, covering subcategories and cotilting modules are also presented and described.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 1","pages":"1 - 50"},"PeriodicalIF":0.5000,"publicationDate":"2018-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0208-4","citationCount":"23","resultStr":"{\"title\":\"Frobenius pairs in abelian categories\",\"authors\":\"Víctor Becerril,&nbsp;Octavio Mendoza,&nbsp;Marco A. Pérez,&nbsp;Valente Santiago\",\"doi\":\"10.1007/s40062-018-0208-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit Auslander–Buchweitz approximation theory and find some relations with cotorsion pairs and model category structures. From the notion of relative generators, we introduce the concept of left Frobenius pairs <span>\\\\(({\\\\mathcal {X}},\\\\omega )\\\\)</span> in an abelian category <span>\\\\({\\\\mathcal {C}}\\\\)</span>. We show how to construct from <span>\\\\(({\\\\mathcal {X}},\\\\omega )\\\\)</span> a projective exact model structure on <span>\\\\({\\\\mathcal {X}}^\\\\wedge \\\\)</span>, the subcategory of objects in <span>\\\\({\\\\mathcal {C}}\\\\)</span> with finite <span>\\\\({\\\\mathcal {X}}\\\\)</span>-resolution dimension, via cotorsion pairs relative to a thick subcategory of <span>\\\\({\\\\mathcal {C}}\\\\)</span>. We also establish correspondences between these model structures, relative cotorsion pairs, Frobenius pairs, and Auslander–Buchweitz contexts. Some applications of this theory are given in the context of Gorenstein homological algebra, and connections with perfect cotorsion pairs, covering subcategories and cotilting modules are also presented and described.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"14 1\",\"pages\":\"1 - 50\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0208-4\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0208-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0208-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们重新研究了Auslander-Buchweitz近似理论,发现了它与扭转对和模型范畴结构之间的关系。从相对生成器的概念出发,在阿贝尔范畴\({\mathcal {C}}\)中引入左Frobenius对\(({\mathcal {X}},\omega )\)的概念。我们展示了如何通过相对于\({\mathcal {C}}\)的厚子类别的扭转对,从\(({\mathcal {X}},\omega )\)构建\({\mathcal {X}}^\wedge \)上的投影精确模型结构,是\({\mathcal {C}}\)中具有有限\({\mathcal {X}}\)分辨率维度的对象的子类别。我们还建立了这些模型结构、相对扭转对、Frobenius对和Auslander-Buchweitz上下文之间的对应关系。给出了该理论在Gorenstein同调代数中的一些应用,并给出了覆盖子范畴和倒模的完备扭转对的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius pairs in abelian categories

We revisit Auslander–Buchweitz approximation theory and find some relations with cotorsion pairs and model category structures. From the notion of relative generators, we introduce the concept of left Frobenius pairs \(({\mathcal {X}},\omega )\) in an abelian category \({\mathcal {C}}\). We show how to construct from \(({\mathcal {X}},\omega )\) a projective exact model structure on \({\mathcal {X}}^\wedge \), the subcategory of objects in \({\mathcal {C}}\) with finite \({\mathcal {X}}\)-resolution dimension, via cotorsion pairs relative to a thick subcategory of \({\mathcal {C}}\). We also establish correspondences between these model structures, relative cotorsion pairs, Frobenius pairs, and Auslander–Buchweitz contexts. Some applications of this theory are given in the context of Gorenstein homological algebra, and connections with perfect cotorsion pairs, covering subcategories and cotilting modules are also presented and described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信