具有分布参数的分数阶微分对策

Q3 Engineering
M. Mamatov, Jalolkon Nuritdinov, Egamberdi Esonov
{"title":"具有分布参数的分数阶微分对策","authors":"M. Mamatov, Jalolkon Nuritdinov, Egamberdi Esonov","doi":"10.34229/1028-0979-2021-4-4","DOIUrl":null,"url":null,"abstract":"The article deals with the problem of pursuit in differential games of fractional order with distributed parameters. Partial fractional derivatives with respect to time and space variables are understood in the sense of Riemann - Liouville, and the Grunwald-Letnikov formula is used in the approximation. The problem of getting into some positive neighborhood of the terminal set is considered. To solve this problem, the finite difference method is used. The fractional Riemann-Liouville derivatives with respect to spatial variables on a segment are approximated using the Grunwald-Letnikov formula. Using a sufficient criterion for the existence of a fractional derivative, a difference approximation of the fractional-order derivative with respect to time is obtained. By approximating a differential game to an explicit difference game, a discrete game is obtained. The corresponding pursuit problem for a discrete game is formulated, which is obtained using the approximation of a continuous game. The concept of the possibility of completing the pursuit, a discrete game in the sense of an exact capture, is defined. Sufficient conditions are obtained for the possibility of completing the pursuit. It is shown that the order of approximation in time is equal to one, and in spatial variables is equal to two. It is proved that if in a discrete game from a given initial position it is possible to complete the pursuit in the sense of exact capture, then in a continuous game from the corresponding initial position it is possible to complete the pursuit in the sense of hitting a certain neighborhood. A structure for constructing pursuit controls is proposed, which will ensure the completion of the game in a finite time. The methods used for this problem can be used to study differential games described by more general equations of fractional order.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIFFERENTIAL GAMES OF FRACTIONAL ORDER WITH DISTRIBUTED PARAMETERS\",\"authors\":\"M. Mamatov, Jalolkon Nuritdinov, Egamberdi Esonov\",\"doi\":\"10.34229/1028-0979-2021-4-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article deals with the problem of pursuit in differential games of fractional order with distributed parameters. Partial fractional derivatives with respect to time and space variables are understood in the sense of Riemann - Liouville, and the Grunwald-Letnikov formula is used in the approximation. The problem of getting into some positive neighborhood of the terminal set is considered. To solve this problem, the finite difference method is used. The fractional Riemann-Liouville derivatives with respect to spatial variables on a segment are approximated using the Grunwald-Letnikov formula. Using a sufficient criterion for the existence of a fractional derivative, a difference approximation of the fractional-order derivative with respect to time is obtained. By approximating a differential game to an explicit difference game, a discrete game is obtained. The corresponding pursuit problem for a discrete game is formulated, which is obtained using the approximation of a continuous game. The concept of the possibility of completing the pursuit, a discrete game in the sense of an exact capture, is defined. Sufficient conditions are obtained for the possibility of completing the pursuit. It is shown that the order of approximation in time is equal to one, and in spatial variables is equal to two. It is proved that if in a discrete game from a given initial position it is possible to complete the pursuit in the sense of exact capture, then in a continuous game from the corresponding initial position it is possible to complete the pursuit in the sense of hitting a certain neighborhood. A structure for constructing pursuit controls is proposed, which will ensure the completion of the game in a finite time. The methods used for this problem can be used to study differential games described by more general equations of fractional order.\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-4-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-4-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有分布参数的分数阶微分对策的追赶问题。关于时间和空间变量的偏分式导数是在黎曼-刘维尔的意义上理解的,并且在近似中使用了Grunwald-Letnikov公式。考虑了进入终端集的某个正邻域的问题。为了解决这个问题,使用了有限差分法。使用Grunwald-Letnikov公式来近似关于分段上的空间变量的分数Riemann-Liouville导数。利用分数阶导数存在的一个充分判据,得到了分数阶导数相对于时间的差分近似。通过将差分对策近似为显式差分对策,得到离散对策。给出了离散对策的相应追击问题,该问题是利用连续对策的近似得到的。定义了完成追捕的可能性的概念,这是一个精确捕获意义上的离散游戏。为完成追捕的可能性获得了充分的条件。结果表明,在时间上近似的阶数等于1,在空间变量上近似的级数等于2。证明了如果在从给定初始位置开始的离散博弈中,有可能在精确捕获的意义上完成追捕,那么在从相应初始位置开始连续博弈中,就有可能在击中某个邻域的意义上实现追捕。提出了一种用于构造追击控制的结构,该结构将确保在有限时间内完成游戏。用于这个问题的方法可以用于研究由更一般的分数阶方程描述的微分对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIFFERENTIAL GAMES OF FRACTIONAL ORDER WITH DISTRIBUTED PARAMETERS
The article deals with the problem of pursuit in differential games of fractional order with distributed parameters. Partial fractional derivatives with respect to time and space variables are understood in the sense of Riemann - Liouville, and the Grunwald-Letnikov formula is used in the approximation. The problem of getting into some positive neighborhood of the terminal set is considered. To solve this problem, the finite difference method is used. The fractional Riemann-Liouville derivatives with respect to spatial variables on a segment are approximated using the Grunwald-Letnikov formula. Using a sufficient criterion for the existence of a fractional derivative, a difference approximation of the fractional-order derivative with respect to time is obtained. By approximating a differential game to an explicit difference game, a discrete game is obtained. The corresponding pursuit problem for a discrete game is formulated, which is obtained using the approximation of a continuous game. The concept of the possibility of completing the pursuit, a discrete game in the sense of an exact capture, is defined. Sufficient conditions are obtained for the possibility of completing the pursuit. It is shown that the order of approximation in time is equal to one, and in spatial variables is equal to two. It is proved that if in a discrete game from a given initial position it is possible to complete the pursuit in the sense of exact capture, then in a continuous game from the corresponding initial position it is possible to complete the pursuit in the sense of hitting a certain neighborhood. A structure for constructing pursuit controls is proposed, which will ensure the completion of the game in a finite time. The methods used for this problem can be used to study differential games described by more general equations of fractional order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信