拉格朗日插值的Hagen–Rothe卷积恒等式

IF 1 Q1 MATHEMATICS
W. Chu
{"title":"拉格朗日插值的Hagen–Rothe卷积恒等式","authors":"W. Chu","doi":"10.47443/dml.2022.188","DOIUrl":null,"url":null,"abstract":"New proofs of Hagen–Rothe identities concerning binomial convolutions are presented through Lagrange interpolations. Keywords: Chu–Vandermonde formula; Hagen–Rothe identities; finite difference; Lagrange interpolation. 2020 Mathematics Subject Classification: 05A10, 11B65.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hagen–Rothe Convolution Identities Through Lagrange Interpolations\",\"authors\":\"W. Chu\",\"doi\":\"10.47443/dml.2022.188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New proofs of Hagen–Rothe identities concerning binomial convolutions are presented through Lagrange interpolations. Keywords: Chu–Vandermonde formula; Hagen–Rothe identities; finite difference; Lagrange interpolation. 2020 Mathematics Subject Classification: 05A10, 11B65.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过拉格朗日插值给出了关于二项式卷积的Hagen–Rothe恒等式的新证明。关键词:楚-范德蒙公式;Hagen–Rothe身份;差异有限;拉格朗日插值。2020数学学科分类:05A10,11B65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hagen–Rothe Convolution Identities Through Lagrange Interpolations
New proofs of Hagen–Rothe identities concerning binomial convolutions are presented through Lagrange interpolations. Keywords: Chu–Vandermonde formula; Hagen–Rothe identities; finite difference; Lagrange interpolation. 2020 Mathematics Subject Classification: 05A10, 11B65.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信