{"title":"姜黄素在表观遗传学上抑制棘白菌素B的组蛋白乙酰化","authors":"V. Kumari, Vinay Kumar, M. Kaushal, Antresh Kumar","doi":"10.3390/physiologia3020015","DOIUrl":null,"url":null,"abstract":"Echinocandin B is a natural product that possesses potent antifungal property against a wide array of fungi. This antifungal agent is produced by Emericella rugulosa. The biosynthetic genes of echinocandin B are physically organized in two gene clusters (ecd and hty). The ecd gene cluster comprises 12 genes (ecdA–L). On the other hand, hty contains six genes (htyA–F). These gene clusters regulate Echinocandin B expression and play an essential role in chromatin modifications. The present study elucidates the epigenetic regulatory network of echinocandin B production using Histone acetyltransferase (HAT) inhibitor; curcumin using transcriptional gene expression analysis. The High-performance liquid chromatography (HPLC) analysis revealed suppression of the echinocandin B levels in the cells treated with curcumin. Curcumin was also found to repress the expression of different ecd genes by several folds. Taken together, we conclude that curcumin targets echinocandin B production by inhibiting histone acetylation as well as disrupting interspecies consortium communication, which eventually leads to a decrease in the echinocandin B synthesis.","PeriodicalId":93484,"journal":{"name":"Physiologia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Curcumin Epigenetically Represses Histone Acetylation of Echinocandin B Producing Emericella rugulosa\",\"authors\":\"V. Kumari, Vinay Kumar, M. Kaushal, Antresh Kumar\",\"doi\":\"10.3390/physiologia3020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Echinocandin B is a natural product that possesses potent antifungal property against a wide array of fungi. This antifungal agent is produced by Emericella rugulosa. The biosynthetic genes of echinocandin B are physically organized in two gene clusters (ecd and hty). The ecd gene cluster comprises 12 genes (ecdA–L). On the other hand, hty contains six genes (htyA–F). These gene clusters regulate Echinocandin B expression and play an essential role in chromatin modifications. The present study elucidates the epigenetic regulatory network of echinocandin B production using Histone acetyltransferase (HAT) inhibitor; curcumin using transcriptional gene expression analysis. The High-performance liquid chromatography (HPLC) analysis revealed suppression of the echinocandin B levels in the cells treated with curcumin. Curcumin was also found to repress the expression of different ecd genes by several folds. Taken together, we conclude that curcumin targets echinocandin B production by inhibiting histone acetylation as well as disrupting interspecies consortium communication, which eventually leads to a decrease in the echinocandin B synthesis.\",\"PeriodicalId\":93484,\"journal\":{\"name\":\"Physiologia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/physiologia3020015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/physiologia3020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Curcumin Epigenetically Represses Histone Acetylation of Echinocandin B Producing Emericella rugulosa
Echinocandin B is a natural product that possesses potent antifungal property against a wide array of fungi. This antifungal agent is produced by Emericella rugulosa. The biosynthetic genes of echinocandin B are physically organized in two gene clusters (ecd and hty). The ecd gene cluster comprises 12 genes (ecdA–L). On the other hand, hty contains six genes (htyA–F). These gene clusters regulate Echinocandin B expression and play an essential role in chromatin modifications. The present study elucidates the epigenetic regulatory network of echinocandin B production using Histone acetyltransferase (HAT) inhibitor; curcumin using transcriptional gene expression analysis. The High-performance liquid chromatography (HPLC) analysis revealed suppression of the echinocandin B levels in the cells treated with curcumin. Curcumin was also found to repress the expression of different ecd genes by several folds. Taken together, we conclude that curcumin targets echinocandin B production by inhibiting histone acetylation as well as disrupting interspecies consortium communication, which eventually leads to a decrease in the echinocandin B synthesis.