连续函数半群上模映射的复合

Pub Date : 2019-10-21 DOI:10.3836/TJM/1502179334
B. Jafarzadeh, F. Sady
{"title":"连续函数半群上模映射的复合","authors":"B. Jafarzadeh, F. Sady","doi":"10.3836/TJM/1502179334","DOIUrl":null,"url":null,"abstract":"For locally compact Hausdorff spaces $X$ and $Y$, and function algebras $A$ and $B$ on $X$ and $Y$, respectively, surjections $T:A \\longrightarrow B$ satisfying norm multiplicative condition $\\|Tf\\, Tg\\|_Y =\\|fg\\|_X$, $f,g\\in A$, with respect to the supremum norms, and those satisfying $\\||Tf|+|Tg|\\|_Y=\\||f|+|g|\\|_X$ have been extensively studied. Motivated by this, we consider certain (multiplicative or additive) subsemigroups $A$ and $B$ of $C_0(X)$ and $C_0(Y)$, respectively, and study surjections $T: A \\longrightarrow B$ satisfying the norm condition $\\rho(Tf, Tg)=\\rho(f,g)$, $f,g \\in A$, for some class of two variable positive functions $\\rho$. It is shown that $T$ is also a composition in modulus map.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition in Modulus Maps on Semigroups of Continuous\\n Functions\",\"authors\":\"B. Jafarzadeh, F. Sady\",\"doi\":\"10.3836/TJM/1502179334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For locally compact Hausdorff spaces $X$ and $Y$, and function algebras $A$ and $B$ on $X$ and $Y$, respectively, surjections $T:A \\\\longrightarrow B$ satisfying norm multiplicative condition $\\\\|Tf\\\\, Tg\\\\|_Y =\\\\|fg\\\\|_X$, $f,g\\\\in A$, with respect to the supremum norms, and those satisfying $\\\\||Tf|+|Tg|\\\\|_Y=\\\\||f|+|g|\\\\|_X$ have been extensively studied. Motivated by this, we consider certain (multiplicative or additive) subsemigroups $A$ and $B$ of $C_0(X)$ and $C_0(Y)$, respectively, and study surjections $T: A \\\\longrightarrow B$ satisfying the norm condition $\\\\rho(Tf, Tg)=\\\\rho(f,g)$, $f,g \\\\in A$, for some class of two variable positive functions $\\\\rho$. It is shown that $T$ is also a composition in modulus map.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/TJM/1502179334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/TJM/1502179334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于局部紧化Hausdorff空间$X$和$Y$,以及分别在$X$和$Y$上的函数代数$A$和$B$,在$A$中满足范数乘法条件$T:A \长列B$, Tg\|_Y =\|fg\|_X$, $f,g\在A$中满足最高范数条件$T:A \长列B$,以及满足$\||Tf|+|Tg|\|_Y=\||f|+|g|\|_X$。基于此,我们分别考虑C_0(X)$和C_0(Y)$的若干子半群$A$和$B$,并研究了对于一类两变量正函数$\rho$,在A$中满足范数条件$\rho(Tf, Tg)=\rho(f,g)$, $f,g $的子半群$T: A \长列B$。证明了$T$也是模映射中的复合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Composition in Modulus Maps on Semigroups of Continuous Functions
For locally compact Hausdorff spaces $X$ and $Y$, and function algebras $A$ and $B$ on $X$ and $Y$, respectively, surjections $T:A \longrightarrow B$ satisfying norm multiplicative condition $\|Tf\, Tg\|_Y =\|fg\|_X$, $f,g\in A$, with respect to the supremum norms, and those satisfying $\||Tf|+|Tg|\|_Y=\||f|+|g|\|_X$ have been extensively studied. Motivated by this, we consider certain (multiplicative or additive) subsemigroups $A$ and $B$ of $C_0(X)$ and $C_0(Y)$, respectively, and study surjections $T: A \longrightarrow B$ satisfying the norm condition $\rho(Tf, Tg)=\rho(f,g)$, $f,g \in A$, for some class of two variable positive functions $\rho$. It is shown that $T$ is also a composition in modulus map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信