{"title":"增材制造部件疲劳强度影响生产相关特性的数值研究","authors":"M. Zeißig, F. Jablonski","doi":"10.2478/ama-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract In order to further enhance the application of additive manufacturing (AM) processes, such as the laser powder bed fusion (L-PBF) process, reliable material data are required. However, the resulting specimen properties are significantly influenced by the process parameters and may also vary depending on the material used. Therefore, the prediction of the final properties is difficult. In the following, the effect of residual stresses on the fatigue strength of 316L steel, a commonly used steel in AM, is investigated using a Weibull distribution. The underlying residual stress distributions as a result of the building process are approximated for two building directions using finite element (FE) models. These imply significantly different distributions of tensile and compressive residual stresses within the component. Apart from the residual stresses, the impact of the mean stress sensitivity is discussed as this also influences the predicted fatigue strength values.","PeriodicalId":44942,"journal":{"name":"Acta Mechanica et Automatica","volume":"17 1","pages":"288 - 291"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Production-Related Characteristics Regarding their Influence on the Fatigue Strength of Additively Manufactured Components\",\"authors\":\"M. Zeißig, F. Jablonski\",\"doi\":\"10.2478/ama-2023-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to further enhance the application of additive manufacturing (AM) processes, such as the laser powder bed fusion (L-PBF) process, reliable material data are required. However, the resulting specimen properties are significantly influenced by the process parameters and may also vary depending on the material used. Therefore, the prediction of the final properties is difficult. In the following, the effect of residual stresses on the fatigue strength of 316L steel, a commonly used steel in AM, is investigated using a Weibull distribution. The underlying residual stress distributions as a result of the building process are approximated for two building directions using finite element (FE) models. These imply significantly different distributions of tensile and compressive residual stresses within the component. Apart from the residual stresses, the impact of the mean stress sensitivity is discussed as this also influences the predicted fatigue strength values.\",\"PeriodicalId\":44942,\"journal\":{\"name\":\"Acta Mechanica et Automatica\",\"volume\":\"17 1\",\"pages\":\"288 - 291\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica et Automatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ama-2023-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica et Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2023-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical Investigation of Production-Related Characteristics Regarding their Influence on the Fatigue Strength of Additively Manufactured Components
Abstract In order to further enhance the application of additive manufacturing (AM) processes, such as the laser powder bed fusion (L-PBF) process, reliable material data are required. However, the resulting specimen properties are significantly influenced by the process parameters and may also vary depending on the material used. Therefore, the prediction of the final properties is difficult. In the following, the effect of residual stresses on the fatigue strength of 316L steel, a commonly used steel in AM, is investigated using a Weibull distribution. The underlying residual stress distributions as a result of the building process are approximated for two building directions using finite element (FE) models. These imply significantly different distributions of tensile and compressive residual stresses within the component. Apart from the residual stresses, the impact of the mean stress sensitivity is discussed as this also influences the predicted fatigue strength values.