A. Álvarez, J. L. Bravo, C. Christopher, P. Mardešić
{"title":"零环上的无穷小中心问题与复合猜想","authors":"A. Álvarez, J. L. Bravo, C. Christopher, P. Mardešić","doi":"10.1134/S0016266321040018","DOIUrl":null,"url":null,"abstract":"<p> We study the analog of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture\",\"authors\":\"A. Álvarez, J. L. Bravo, C. Christopher, P. Mardešić\",\"doi\":\"10.1134/S0016266321040018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the analog of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266321040018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266321040018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture
We study the analog of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results.
期刊介绍:
Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.