{"title":"关于由从属算子和\\(q\\)-导数算子定义的一类广义双单价函数","authors":"Xiaojing Chen, W. Chu","doi":"10.30538/psrp-oma2022.0100","DOIUrl":null,"url":null,"abstract":"In this paper, the \\(q\\)-derivative operator and the principle of subordination were employed to define a subclass \\(\\mathcal{B}_q(\\tau,\\lambda,\\phi)\\) of analytic and bi-univalent functions in the open unit disk \\(\\mathcal{U}\\). For functions \\(f(z)\\in\\mathcal{B}_q(\\tau,\\lambda,\\phi)\\), we obtained early coefficient bounds and some Fekete-Szegö estimates for real and complex parameters.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a generalized class of bi-univalent functions defined by subordination and \\\\(q\\\\)-derivative operator\",\"authors\":\"Xiaojing Chen, W. Chu\",\"doi\":\"10.30538/psrp-oma2022.0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the \\\\(q\\\\)-derivative operator and the principle of subordination were employed to define a subclass \\\\(\\\\mathcal{B}_q(\\\\tau,\\\\lambda,\\\\phi)\\\\) of analytic and bi-univalent functions in the open unit disk \\\\(\\\\mathcal{U}\\\\). For functions \\\\(f(z)\\\\in\\\\mathcal{B}_q(\\\\tau,\\\\lambda,\\\\phi)\\\\), we obtained early coefficient bounds and some Fekete-Szegö estimates for real and complex parameters.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2022.0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2022.0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a generalized class of bi-univalent functions defined by subordination and \(q\)-derivative operator
In this paper, the \(q\)-derivative operator and the principle of subordination were employed to define a subclass \(\mathcal{B}_q(\tau,\lambda,\phi)\) of analytic and bi-univalent functions in the open unit disk \(\mathcal{U}\). For functions \(f(z)\in\mathcal{B}_q(\tau,\lambda,\phi)\), we obtained early coefficient bounds and some Fekete-Szegö estimates for real and complex parameters.