{"title":"部分对称空间中多值非自映射的不动点定理","authors":"Lucas Wangwe, Santosh Kumar","doi":"10.1515/taa-2021-0102","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we proved a fixed point theorem for multi-valued non-self mappings in partial symmetric spaces. In doing so, we extended and generalized the results in literature by employing a convex structure for multi-valued non-self mappings using Rhoades type contractions. We also provided an illustrative example to support the results.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"9 1","pages":"20 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fixed Point Theorem for Multivalued Non-self Mappings in Partial Symmetric Spaces\",\"authors\":\"Lucas Wangwe, Santosh Kumar\",\"doi\":\"10.1515/taa-2021-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we proved a fixed point theorem for multi-valued non-self mappings in partial symmetric spaces. In doing so, we extended and generalized the results in literature by employing a convex structure for multi-valued non-self mappings using Rhoades type contractions. We also provided an illustrative example to support the results.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"9 1\",\"pages\":\"20 - 36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2021-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2021-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Fixed Point Theorem for Multivalued Non-self Mappings in Partial Symmetric Spaces
Abstract In this paper, we proved a fixed point theorem for multi-valued non-self mappings in partial symmetric spaces. In doing so, we extended and generalized the results in literature by employing a convex structure for multi-valued non-self mappings using Rhoades type contractions. We also provided an illustrative example to support the results.