艾特肯式方法效率高

IF 0.4 Q4 MATHEMATICS
Pankaj Jain, Kriti Sethi
{"title":"艾特肯式方法效率高","authors":"Pankaj Jain,&nbsp;Kriti Sethi","doi":"10.1016/j.trmi.2018.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the iterative method of Aitken type for solving the non-linear equations, in which the interpolation nodes are controlled by variant of Newton method or by a general method of order <span><math><mi>p</mi><mo>.</mo></math></span> By combining such methods with a generalized secant method, it is shown that the order of convergence can be increased to as high as desired and also in the limiting case efficiency of the method is 2. Several numerical examples are provided in support of the theoretical results.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 2","pages":"Pages 223-237"},"PeriodicalIF":0.4000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.001","citationCount":"4","resultStr":"{\"title\":\"Aitken type methods with high efficiency\",\"authors\":\"Pankaj Jain,&nbsp;Kriti Sethi\",\"doi\":\"10.1016/j.trmi.2018.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the iterative method of Aitken type for solving the non-linear equations, in which the interpolation nodes are controlled by variant of Newton method or by a general method of order <span><math><mi>p</mi><mo>.</mo></math></span> By combining such methods with a generalized secant method, it is shown that the order of convergence can be increased to as high as desired and also in the limiting case efficiency of the method is 2. Several numerical examples are provided in support of the theoretical results.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 2\",\"pages\":\"Pages 223-237\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.01.001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217301459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了求解非线性方程的Aitken型迭代法,其中插值节点由牛顿法的变体或p阶的一般方法控制,并与广义割线法相结合,证明了该方法的收敛阶可以提高到期望的高度,并且在极限情况下,该方法的效率为2。给出了几个数值算例来支持理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aitken type methods with high efficiency

In this paper, we study the iterative method of Aitken type for solving the non-linear equations, in which the interpolation nodes are controlled by variant of Newton method or by a general method of order p. By combining such methods with a generalized secant method, it is shown that the order of convergence can be increased to as high as desired and also in the limiting case efficiency of the method is 2. Several numerical examples are provided in support of the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信