关于有对合的素环的斜李积及其推导

Q4 Mathematics
M. R. Mozumder, N. Dar, Mohammad Salahuddin Khan, A. Abbasi̇
{"title":"关于有对合的素环的斜李积及其推导","authors":"M. R. Mozumder, N. Dar, Mohammad Salahuddin Khan, A. Abbasi̇","doi":"10.7151/dmgaa.1355","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a ring with involution ′∗′. The skew Lie product of a, b ∈ R is defined by ∗[a, b] = ab − ba∗. The purpose of this paper is to study the commutativity of a prime ring which satisfies the various ∗-differential identities involving skew Lie product. Finally, we provide two examples to prove that the assumed restrictions on some of our results are not superfluous.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"41 1","pages":"183 - 194"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Skew Lie Product and Derivations of Prime Rings with Involution\",\"authors\":\"M. R. Mozumder, N. Dar, Mohammad Salahuddin Khan, A. Abbasi̇\",\"doi\":\"10.7151/dmgaa.1355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a ring with involution ′∗′. The skew Lie product of a, b ∈ R is defined by ∗[a, b] = ab − ba∗. The purpose of this paper is to study the commutativity of a prime ring which satisfies the various ∗-differential identities involving skew Lie product. Finally, we provide two examples to prove that the assumed restrictions on some of our results are not superfluous.\",\"PeriodicalId\":36816,\"journal\":{\"name\":\"Discussiones Mathematicae - General Algebra and Applications\",\"volume\":\"41 1\",\"pages\":\"183 - 194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae - General Algebra and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgaa.1355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个有对合' * '的环。a, b∈R的斜李积定义为∗[a, b] = ab−ba∗。本文的目的是研究一个质数环的交换性,它满足包含斜李积的各种* -微分恒等式。最后,我们提供了两个例子来证明对我们的一些结果的假设限制并不是多余的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Skew Lie Product and Derivations of Prime Rings with Involution
Abstract Let R be a ring with involution ′∗′. The skew Lie product of a, b ∈ R is defined by ∗[a, b] = ab − ba∗. The purpose of this paper is to study the commutativity of a prime ring which satisfies the various ∗-differential identities involving skew Lie product. Finally, we provide two examples to prove that the assumed restrictions on some of our results are not superfluous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信