{"title":"无人机-激光雷达在植被地形中的精度","authors":"Maja Kucharczyk, C. Hugenholtz, Xueyang Zou","doi":"10.1139/JUVS-2017-0030","DOIUrl":null,"url":null,"abstract":"We examined the horizontal and vertical accuracy of LiDAR data acquired from an unmanned aerial vehicle (UAV) at a field site with six vegetation types: coniferous trees, deciduous trees, short grass (0–0.3 m height), tall grass (>0.3 m height), short shrubs (0–1 m height), and tall shrubs (>1 m height). The objective was to assess positional accuracy of the ground surface in the context of digital mapping standards, and to determine how different vegetation types affect vertical accuracy. The data were acquired from a single-rotor vertical takeoff and landing UAV equipped with a Riegl VUX-1UAV laser scanner, KVH Industries 1750 IMU, and dual NovAtel GNSS receivers. Reference measurements of ground surface elevation were acquired with conventional field surveying techniques. Accuracy was evaluated using methods in the 2015 American Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data. Results show that horizontal accuracy and vegetated vertical accuracy at the 95% confidence level were 0.05 and 0.24 m, respectively. Median vertical errors significantly differed among 10 of 15 vegetation type pairs, highlighting the need to account for variations of vegetation structure. According to the 2015 ASPRS standards, the reported errors fulfill the requirements for mapping at the 2 and 8 cm horizontal and vertical class levels, respectively.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/JUVS-2017-0030","citationCount":"7","resultStr":"{\"title\":\"UAV–LiDAR accuracy in vegetated terrain\",\"authors\":\"Maja Kucharczyk, C. Hugenholtz, Xueyang Zou\",\"doi\":\"10.1139/JUVS-2017-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined the horizontal and vertical accuracy of LiDAR data acquired from an unmanned aerial vehicle (UAV) at a field site with six vegetation types: coniferous trees, deciduous trees, short grass (0–0.3 m height), tall grass (>0.3 m height), short shrubs (0–1 m height), and tall shrubs (>1 m height). The objective was to assess positional accuracy of the ground surface in the context of digital mapping standards, and to determine how different vegetation types affect vertical accuracy. The data were acquired from a single-rotor vertical takeoff and landing UAV equipped with a Riegl VUX-1UAV laser scanner, KVH Industries 1750 IMU, and dual NovAtel GNSS receivers. Reference measurements of ground surface elevation were acquired with conventional field surveying techniques. Accuracy was evaluated using methods in the 2015 American Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data. Results show that horizontal accuracy and vegetated vertical accuracy at the 95% confidence level were 0.05 and 0.24 m, respectively. Median vertical errors significantly differed among 10 of 15 vegetation type pairs, highlighting the need to account for variations of vegetation structure. According to the 2015 ASPRS standards, the reported errors fulfill the requirements for mapping at the 2 and 8 cm horizontal and vertical class levels, respectively.\",\"PeriodicalId\":45619,\"journal\":{\"name\":\"Journal of Unmanned Vehicle Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/JUVS-2017-0030\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unmanned Vehicle Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/JUVS-2017-0030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/JUVS-2017-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
We examined the horizontal and vertical accuracy of LiDAR data acquired from an unmanned aerial vehicle (UAV) at a field site with six vegetation types: coniferous trees, deciduous trees, short grass (0–0.3 m height), tall grass (>0.3 m height), short shrubs (0–1 m height), and tall shrubs (>1 m height). The objective was to assess positional accuracy of the ground surface in the context of digital mapping standards, and to determine how different vegetation types affect vertical accuracy. The data were acquired from a single-rotor vertical takeoff and landing UAV equipped with a Riegl VUX-1UAV laser scanner, KVH Industries 1750 IMU, and dual NovAtel GNSS receivers. Reference measurements of ground surface elevation were acquired with conventional field surveying techniques. Accuracy was evaluated using methods in the 2015 American Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial Data. Results show that horizontal accuracy and vegetated vertical accuracy at the 95% confidence level were 0.05 and 0.24 m, respectively. Median vertical errors significantly differed among 10 of 15 vegetation type pairs, highlighting the need to account for variations of vegetation structure. According to the 2015 ASPRS standards, the reported errors fulfill the requirements for mapping at the 2 and 8 cm horizontal and vertical class levels, respectively.