幂零核有限嵌入问题的注解

IF 0.3 4区 数学 Q4 MATHEMATICS
Arno Fehm, Franccois Legrand
{"title":"幂零核有限嵌入问题的注解","authors":"Arno Fehm, Franccois Legrand","doi":"10.5802/jtnb.1215","DOIUrl":null,"url":null,"abstract":"The first aim of this note is to fill a gap in the literature by giving a proof of the following refinement of Shafarevich's theorem on solvable Galois groups: Given a global field $k$, a finite set $\\mathcal{S}$ of primes of $k$, and a finite solvable group $G$, there is a Galois field extension of $k$ of Galois group $G$ in which all primes in $\\mathcal{S}$ are totally split. To that end, we prove that, given a global field $k$ and a finite set $\\mathcal{S}$ of primes of $k$, every finite split embedding problem $G \\rightarrow {\\rm{Gal}}(L/k)$ over $k$ with nilpotent kernel has a solution ${\\rm{Gal}}(F/k) \\rightarrow G$ such that all primes in $\\mathcal{S}$ are totally split in $F/L$. We then use this to contribute to inverse Galois theory over division rings. Namely, given a finite split embedding problem with nilpotent kernel over a finite field $k$, we fully describe for which automorphisms $\\sigma$ of $k$ the embedding problem acquires a solution over the skew field of fractions $k(T, \\sigma)$ of the twisted polynomial ring $k[T, \\sigma]$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A note on finite embedding problems with nilpotent kernel\",\"authors\":\"Arno Fehm, Franccois Legrand\",\"doi\":\"10.5802/jtnb.1215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this note is to fill a gap in the literature by giving a proof of the following refinement of Shafarevich's theorem on solvable Galois groups: Given a global field $k$, a finite set $\\\\mathcal{S}$ of primes of $k$, and a finite solvable group $G$, there is a Galois field extension of $k$ of Galois group $G$ in which all primes in $\\\\mathcal{S}$ are totally split. To that end, we prove that, given a global field $k$ and a finite set $\\\\mathcal{S}$ of primes of $k$, every finite split embedding problem $G \\\\rightarrow {\\\\rm{Gal}}(L/k)$ over $k$ with nilpotent kernel has a solution ${\\\\rm{Gal}}(F/k) \\\\rightarrow G$ such that all primes in $\\\\mathcal{S}$ are totally split in $F/L$. We then use this to contribute to inverse Galois theory over division rings. Namely, given a finite split embedding problem with nilpotent kernel over a finite field $k$, we fully describe for which automorphisms $\\\\sigma$ of $k$ the embedding problem acquires a solution over the skew field of fractions $k(T, \\\\sigma)$ of the twisted polynomial ring $k[T, \\\\sigma]$.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1215\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1215","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文的第一个目的是通过证明Shafarevich定理在可解伽罗瓦群上的以下改进来填补文献的空白:给定一个全局域$k$,一个有限可解群$k$的素数集合$\mathcal{S}$,一个有限可解群$G$,存在一个伽罗瓦群$G$的伽罗瓦域扩展$k$,其中$\mathcal{S}$中的所有素数都是完全分裂的。为此,我们证明了,给定一个全局域$k$和一个$k$的素数有限集合$\mathcal{S}$,在$k$上每一个具有幂零核的有限分割嵌入问题$G \rightarrow {\rm{Gal}}(L/k)$都有一个解${\rm{Gal}}(F/k) \rightarrow G$,使得$\mathcal{S}$中的所有素数都完全分割到$F/L$。然后,我们用它来对除法环上的逆伽罗瓦理论做出贡献。即,给定一个有限域$k$上具有零核的有限分裂嵌入问题,我们充分描述了$k$的自同构$\sigma$在扭曲多项式环$k[T, \sigma]$的分数的偏场$k(T, \sigma)$上得到一个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on finite embedding problems with nilpotent kernel
The first aim of this note is to fill a gap in the literature by giving a proof of the following refinement of Shafarevich's theorem on solvable Galois groups: Given a global field $k$, a finite set $\mathcal{S}$ of primes of $k$, and a finite solvable group $G$, there is a Galois field extension of $k$ of Galois group $G$ in which all primes in $\mathcal{S}$ are totally split. To that end, we prove that, given a global field $k$ and a finite set $\mathcal{S}$ of primes of $k$, every finite split embedding problem $G \rightarrow {\rm{Gal}}(L/k)$ over $k$ with nilpotent kernel has a solution ${\rm{Gal}}(F/k) \rightarrow G$ such that all primes in $\mathcal{S}$ are totally split in $F/L$. We then use this to contribute to inverse Galois theory over division rings. Namely, given a finite split embedding problem with nilpotent kernel over a finite field $k$, we fully describe for which automorphisms $\sigma$ of $k$ the embedding problem acquires a solution over the skew field of fractions $k(T, \sigma)$ of the twisted polynomial ring $k[T, \sigma]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信