密度恒定和横向变化时地形对重力的球形布格效应

IF 1.3 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Mehmet Simav
{"title":"密度恒定和横向变化时地形对重力的球形布格效应","authors":"Mehmet Simav","doi":"10.55730/1300-0985.1868","DOIUrl":null,"url":null,"abstract":": Gravitational attraction of the Earth’s visible topography above the mean sea level is generally regarded as an unwanted signal in various geoscience applications. It should be removed from the observations to reveal the remaining signals of subsurface anomalous density distribution or to satisfy the boundary condition in solving the geodetic boundary value problems. However, the task of determining the gravimetric terrain effects involves tedious numerical computations when high‐resolution elevation data is used. While the traditional computational approach relies on flat-Earth approximation and neglects the topographic masses beyond some fixed integration radius, e.g., planar complete Bouguer correction, the modern methods apply spherical-Earth approximation and consider the far zone contribution, e.g., spherical complete Bouguer correction. This study compares the planar and spherical complete Bouguer corrections with constant topo-density at two test areas in Turkey, then assesses the performance of the recently released ultra-high resolution SRTM2gravity model in the same regions. Moreover, the first lateral global topographical density model (UNB_ TopoDens) has been employed to quantify the effect of topographic mass-density anomalies on gravity across the study areas. The numerical investigations have shown that simple planar complete Bouguer corrections exhibit similar spatial structure to those of the spherical counterparts, but with different magnitudes. There exists an average bias of around 30 mGal between the planar and spherical Bouguer correction because the latter takes the gravitational attraction of global topography into account. The SRTM2gravity model performs exceptionally well in the test regions and can directly be used to derive spherical Bouguer corrections over land areas with little computational effort. The topo-density anomalies may induce gravity effects up to 60 mGal, particularly over the mountainous parts of the study regions. This considerable amount of contribution should be treated carefully and cautiously especially in geodetic applications since the solution of geodetic boundary problems requires rigorous compensation of topographical gravity effects with actual density distribution. The results of the study are also hoped to give insights into the reproduction of the forthcoming regional Bouguer anomaly map of Turkey.","PeriodicalId":49411,"journal":{"name":"Turkish Journal of Earth Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical Bouguer effect of topography on gravity with constant and laterally varying density\",\"authors\":\"Mehmet Simav\",\"doi\":\"10.55730/1300-0985.1868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Gravitational attraction of the Earth’s visible topography above the mean sea level is generally regarded as an unwanted signal in various geoscience applications. It should be removed from the observations to reveal the remaining signals of subsurface anomalous density distribution or to satisfy the boundary condition in solving the geodetic boundary value problems. However, the task of determining the gravimetric terrain effects involves tedious numerical computations when high‐resolution elevation data is used. While the traditional computational approach relies on flat-Earth approximation and neglects the topographic masses beyond some fixed integration radius, e.g., planar complete Bouguer correction, the modern methods apply spherical-Earth approximation and consider the far zone contribution, e.g., spherical complete Bouguer correction. This study compares the planar and spherical complete Bouguer corrections with constant topo-density at two test areas in Turkey, then assesses the performance of the recently released ultra-high resolution SRTM2gravity model in the same regions. Moreover, the first lateral global topographical density model (UNB_ TopoDens) has been employed to quantify the effect of topographic mass-density anomalies on gravity across the study areas. The numerical investigations have shown that simple planar complete Bouguer corrections exhibit similar spatial structure to those of the spherical counterparts, but with different magnitudes. There exists an average bias of around 30 mGal between the planar and spherical Bouguer correction because the latter takes the gravitational attraction of global topography into account. The SRTM2gravity model performs exceptionally well in the test regions and can directly be used to derive spherical Bouguer corrections over land areas with little computational effort. The topo-density anomalies may induce gravity effects up to 60 mGal, particularly over the mountainous parts of the study regions. This considerable amount of contribution should be treated carefully and cautiously especially in geodetic applications since the solution of geodetic boundary problems requires rigorous compensation of topographical gravity effects with actual density distribution. The results of the study are also hoped to give insights into the reproduction of the forthcoming regional Bouguer anomaly map of Turkey.\",\"PeriodicalId\":49411,\"journal\":{\"name\":\"Turkish Journal of Earth Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0985.1868\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.55730/1300-0985.1868","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

:在各种地球科学应用中,地球平均海平面以上可见地形的引力吸引力通常被视为不必要的信号。在求解大地测量边值问题时,为了揭示地下异常密度分布的剩余信号或满足边界条件,应将其从观测中删除。然而,当使用高分辨率高程数据时,确定重力地形效应的任务涉及繁琐的数值计算。虽然传统的计算方法依赖于平地球近似,忽略了某些固定积分半径以外的地形质量,例如平面完全布格校正,但现代方法应用球面地球近似,并考虑远区贡献,例如球面完全布格校正。本研究比较了土耳其两个试验区恒定地形密度的平面和球形完全布格校正,然后评估了最近发布的超高分辨率SRTM2重力模型在相同区域的性能。此外,第一个横向全球地形密度模型(UNB_TopoDens)已被用于量化地形质量密度异常对研究区域重力的影响。数值研究表明,简单的平面完全布格改正表现出与球形改正相似的空间结构,但幅度不同。平面布格校正和球面布格校正之间存在约30mGal的平均偏差,因为后者考虑了全球地形的引力。SRTM2重力模型在测试区域表现非常好,可以直接用于推导陆地区域的球面布格修正,而只需很少的计算工作量。地形密度异常可能导致高达60 mGal的重力效应,特别是在研究区域的山区。应谨慎对待这一相当大的贡献,尤其是在大地测量应用中,因为解决大地测量边界问题需要用实际密度分布严格补偿地形重力效应。这项研究的结果也有望为即将绘制的土耳其区域布格异常图的复制提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical Bouguer effect of topography on gravity with constant and laterally varying density
: Gravitational attraction of the Earth’s visible topography above the mean sea level is generally regarded as an unwanted signal in various geoscience applications. It should be removed from the observations to reveal the remaining signals of subsurface anomalous density distribution or to satisfy the boundary condition in solving the geodetic boundary value problems. However, the task of determining the gravimetric terrain effects involves tedious numerical computations when high‐resolution elevation data is used. While the traditional computational approach relies on flat-Earth approximation and neglects the topographic masses beyond some fixed integration radius, e.g., planar complete Bouguer correction, the modern methods apply spherical-Earth approximation and consider the far zone contribution, e.g., spherical complete Bouguer correction. This study compares the planar and spherical complete Bouguer corrections with constant topo-density at two test areas in Turkey, then assesses the performance of the recently released ultra-high resolution SRTM2gravity model in the same regions. Moreover, the first lateral global topographical density model (UNB_ TopoDens) has been employed to quantify the effect of topographic mass-density anomalies on gravity across the study areas. The numerical investigations have shown that simple planar complete Bouguer corrections exhibit similar spatial structure to those of the spherical counterparts, but with different magnitudes. There exists an average bias of around 30 mGal between the planar and spherical Bouguer correction because the latter takes the gravitational attraction of global topography into account. The SRTM2gravity model performs exceptionally well in the test regions and can directly be used to derive spherical Bouguer corrections over land areas with little computational effort. The topo-density anomalies may induce gravity effects up to 60 mGal, particularly over the mountainous parts of the study regions. This considerable amount of contribution should be treated carefully and cautiously especially in geodetic applications since the solution of geodetic boundary problems requires rigorous compensation of topographical gravity effects with actual density distribution. The results of the study are also hoped to give insights into the reproduction of the forthcoming regional Bouguer anomaly map of Turkey.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Earth Sciences
Turkish Journal of Earth Sciences 地学-地球科学综合
CiteScore
2.40
自引率
10.00%
发文量
6
审稿时长
6 months
期刊介绍: The Turkish Journal of Earth Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK). It is an international English-language journal for the publication of significant original recent research in a wide spectrum of topics in the earth sciences, such as geology, structural geology, tectonics, sedimentology, geochemistry, geochronology, paleontology, igneous and metamorphic petrology, mineralogy, biostratigraphy, geophysics, geomorphology, paleoecology and oceanography, and mineral deposits. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信