广义几乎偶clifford流形及其扭转空间

IF 0.5 Q3 MATHEMATICS
Luis Fernando Hernández-Moguel, R. Herrera
{"title":"广义几乎偶clifford流形及其扭转空间","authors":"Luis Fernando Hernández-Moguel, R. Herrera","doi":"10.1515/coma-2020-0108","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the recent interest in even-Clifford structures and in generalized complex and quaternionic geometries, we introduce the notion of generalized almost even-Clifford structure. We generalize the Arizmendi-Hadfield twistor space construction on even-Clifford manifolds to this setting and show that such a twistor space admits a generalized complex structure under certain conditions.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"8 1","pages":"96 - 124"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2020-0108","citationCount":"0","resultStr":"{\"title\":\"Generalized almost even-Clifford manifolds and their twistor spaces\",\"authors\":\"Luis Fernando Hernández-Moguel, R. Herrera\",\"doi\":\"10.1515/coma-2020-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by the recent interest in even-Clifford structures and in generalized complex and quaternionic geometries, we introduce the notion of generalized almost even-Clifford structure. We generalize the Arizmendi-Hadfield twistor space construction on even-Clifford manifolds to this setting and show that such a twistor space admits a generalized complex structure under certain conditions.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"8 1\",\"pages\":\"96 - 124\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2020-0108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2020-0108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于最近对偶Clifford结构以及广义复几何和四元数几何的兴趣,我们引入了广义几乎偶Cliffor德结构的概念。我们将甚至Clifford流形上的Arizmendi-Hadfield扭曲空间构造推广到这个设置,并证明了这样的扭曲空间在某些条件下允许广义复结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized almost even-Clifford manifolds and their twistor spaces
Abstract Motivated by the recent interest in even-Clifford structures and in generalized complex and quaternionic geometries, we introduce the notion of generalized almost even-Clifford structure. We generalize the Arizmendi-Hadfield twistor space construction on even-Clifford manifolds to this setting and show that such a twistor space admits a generalized complex structure under certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信