E. Coelho-Barros, J. Achcar, E. Martinez, N. Davarzani, H. Grabsch
{"title":"分段威布尔分布的贝叶斯推理","authors":"E. Coelho-Barros, J. Achcar, E. Martinez, N. Davarzani, H. Grabsch","doi":"10.15446/RCE.V42N2.76815","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a Bayesian approach for segmented Weibull distributions which could be a good alternative to analyze medical survival data in the presence of censored observations and covariates. With the obtained Bayesian estimated change-points we could get an excellent fit of the proposed model to any data sets. With the proposed methodology, it is also possible to identify survival times intervals where a covariate could have significantly different efects when compared to other lifetime intervals, an important point under a clinical view. The obtained Bayesian estimates are obtained using standard Markov Chain Monte Carlo methods. Some examples with real data sets illustrate the proposed methodology and its potential clinical value.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/RCE.V42N2.76815","citationCount":"1","resultStr":"{\"title\":\"Bayesian Inference For The Segmented Weibull Distribution\",\"authors\":\"E. Coelho-Barros, J. Achcar, E. Martinez, N. Davarzani, H. Grabsch\",\"doi\":\"10.15446/RCE.V42N2.76815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a Bayesian approach for segmented Weibull distributions which could be a good alternative to analyze medical survival data in the presence of censored observations and covariates. With the obtained Bayesian estimated change-points we could get an excellent fit of the proposed model to any data sets. With the proposed methodology, it is also possible to identify survival times intervals where a covariate could have significantly different efects when compared to other lifetime intervals, an important point under a clinical view. The obtained Bayesian estimates are obtained using standard Markov Chain Monte Carlo methods. Some examples with real data sets illustrate the proposed methodology and its potential clinical value.\",\"PeriodicalId\":54477,\"journal\":{\"name\":\"Revista Colombiana De Estadistica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/RCE.V42N2.76815\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana De Estadistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RCE.V42N2.76815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V42N2.76815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Bayesian Inference For The Segmented Weibull Distribution
In this paper, we introduce a Bayesian approach for segmented Weibull distributions which could be a good alternative to analyze medical survival data in the presence of censored observations and covariates. With the obtained Bayesian estimated change-points we could get an excellent fit of the proposed model to any data sets. With the proposed methodology, it is also possible to identify survival times intervals where a covariate could have significantly different efects when compared to other lifetime intervals, an important point under a clinical view. The obtained Bayesian estimates are obtained using standard Markov Chain Monte Carlo methods. Some examples with real data sets illustrate the proposed methodology and its potential clinical value.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.