负缩紧完全Kähler流形上的不变度量

IF 3.5 1区 数学 Q1 MATHEMATICS
Damin Wu, S. Yau
{"title":"负缩紧完全Kähler流形上的不变度量","authors":"Damin Wu, S. Yau","doi":"10.1090/jams/933","DOIUrl":null,"url":null,"abstract":"We prove that a complete Kähler manifold with holomorphic curvature bounded between two negative constants admits a unique complete Kähler-Einstein metric. We also show this metric and the Kobayashi-Royden metric are both uniformly equivalent to the background Kähler metric. Furthermore, all three metrics are shown to be uniformly equivalent to the Berg- man metric, if the complete Kähler manifold is simply-connected, with the sectional curvature bounded between two negative constants. In particular, we confirm two conjectures of R. E. Greene and H. Wu posted in 1979.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/933","citationCount":"36","resultStr":"{\"title\":\"Invariant metrics on negatively pinched complete Kähler manifolds\",\"authors\":\"Damin Wu, S. Yau\",\"doi\":\"10.1090/jams/933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a complete Kähler manifold with holomorphic curvature bounded between two negative constants admits a unique complete Kähler-Einstein metric. We also show this metric and the Kobayashi-Royden metric are both uniformly equivalent to the background Kähler metric. Furthermore, all three metrics are shown to be uniformly equivalent to the Berg- man metric, if the complete Kähler manifold is simply-connected, with the sectional curvature bounded between two negative constants. In particular, we confirm two conjectures of R. E. Greene and H. Wu posted in 1979.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/933\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/933\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/933","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 36

摘要

我们证明了一个全纯曲率在两个负常数之间的完备Kähler流形允许一个唯一的完备Káhler-Einstein度量。我们还证明了这个度量和Kobayashi-Royden度量都一致等价于背景Kähler度量。此外,如果完整的Kähler流形是简单连接的,并且截面曲率在两个负常数之间,则所有三个度量都被证明一致等价于Berg-man度量。特别是,我们证实了林和吴在1979年发表的两个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant metrics on negatively pinched complete Kähler manifolds
We prove that a complete Kähler manifold with holomorphic curvature bounded between two negative constants admits a unique complete Kähler-Einstein metric. We also show this metric and the Kobayashi-Royden metric are both uniformly equivalent to the background Kähler metric. Furthermore, all three metrics are shown to be uniformly equivalent to the Berg- man metric, if the complete Kähler manifold is simply-connected, with the sectional curvature bounded between two negative constants. In particular, we confirm two conjectures of R. E. Greene and H. Wu posted in 1979.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信