井内设备钢在腐蚀性和侵蚀性环境中连续工作的退化问题

IF 2.8 Q2 MINING & MINERAL PROCESSING
Yurii Vynnykov, M. Kharchenko, S. Manhura, A. Aniskin, A. Manhura
{"title":"井内设备钢在腐蚀性和侵蚀性环境中连续工作的退化问题","authors":"Yurii Vynnykov, M. Kharchenko, S. Manhura, A. Aniskin, A. Manhura","doi":"10.33271/mining17.01.084","DOIUrl":null,"url":null,"abstract":"Purpose is to analyze steel degradation of the internal well equipment during its continuous service while contacting directly the corrosive environments. Methods. A range of research concerning the damaged metal tubes of the internal equipment for oil and gas wells, in particular regarding continuous service tubing, comprised both standard and specific studies involving different variations of X-ray spectral analysis with the use of scanning electron microscope JSM-35CF (JEOL Company, Japan) and SEM-515 with microanalyzer Link by Philips Company. The studied samples have been made of tubing in the period of the unauthorized and emergency well shutdowns; life of the wells is 0 up to 15 years. To analyze both structure and chemical composition of metal inclusive of such gases as oxygen and hydrogen, chippings were produced mechanically from various parts of tube walls. Findings. X-ray structural studies have made it possible to obtain data confirming cementite decay (Fe3С) in the tube metal during continuous operation of the internal well equipment. X-ray structural analysis methods have helped identify the parameters of crystal lattice of a matrix; and a level of elastic distortions of the lattice (i.e. microstresses of the distortions) has been evaluated as well as carbon distribution within ferrite and cementite. The abovementioned offered the possibility to describe both reason and mechanism of the reduced resistance to corrosion in the context of internal well equipment. Originality. New regularities under cementite decay in tube metal have been identified in addition to changes in the parameters of a crystal a lattice; microstresses of the lattice distortions; and carbon distribution within ferrite and cementite. The aforesaid helps explain in a new way both reason and mechanism of the reduced resistance to corrosion in the context of internal well structures operating continuously in aggressive environments. The basic sources and mechanisms of tube steel degradation, resulting from the metal hydrogenation and oxidation, have been defined which becomes the foundation to develop scientifically the substantiated measures mitigating the negative impact on the condition of the internal well facilities operating continuously in the chemically aggressive environments. Practical implications. Degrading hydrogen effect on the crystal lattice of metal has been proved. The effect creates conditions under which tube structures of oil and gas wells experience their failure.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of the internal well equipment steel under continuous service in the corrosive and aggressive environments\",\"authors\":\"Yurii Vynnykov, M. Kharchenko, S. Manhura, A. Aniskin, A. Manhura\",\"doi\":\"10.33271/mining17.01.084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose is to analyze steel degradation of the internal well equipment during its continuous service while contacting directly the corrosive environments. Methods. A range of research concerning the damaged metal tubes of the internal equipment for oil and gas wells, in particular regarding continuous service tubing, comprised both standard and specific studies involving different variations of X-ray spectral analysis with the use of scanning electron microscope JSM-35CF (JEOL Company, Japan) and SEM-515 with microanalyzer Link by Philips Company. The studied samples have been made of tubing in the period of the unauthorized and emergency well shutdowns; life of the wells is 0 up to 15 years. To analyze both structure and chemical composition of metal inclusive of such gases as oxygen and hydrogen, chippings were produced mechanically from various parts of tube walls. Findings. X-ray structural studies have made it possible to obtain data confirming cementite decay (Fe3С) in the tube metal during continuous operation of the internal well equipment. X-ray structural analysis methods have helped identify the parameters of crystal lattice of a matrix; and a level of elastic distortions of the lattice (i.e. microstresses of the distortions) has been evaluated as well as carbon distribution within ferrite and cementite. The abovementioned offered the possibility to describe both reason and mechanism of the reduced resistance to corrosion in the context of internal well equipment. Originality. New regularities under cementite decay in tube metal have been identified in addition to changes in the parameters of a crystal a lattice; microstresses of the lattice distortions; and carbon distribution within ferrite and cementite. The aforesaid helps explain in a new way both reason and mechanism of the reduced resistance to corrosion in the context of internal well structures operating continuously in aggressive environments. The basic sources and mechanisms of tube steel degradation, resulting from the metal hydrogenation and oxidation, have been defined which becomes the foundation to develop scientifically the substantiated measures mitigating the negative impact on the condition of the internal well facilities operating continuously in the chemically aggressive environments. Practical implications. Degrading hydrogen effect on the crystal lattice of metal has been proved. The effect creates conditions under which tube structures of oil and gas wells experience their failure.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining17.01.084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.01.084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

目的是分析内部钻井设备在直接接触腐蚀性环境的连续使用过程中的钢材退化情况。方法。一系列关于油气井内部设备损坏金属管的研究,特别是关于连续油管的研究,包括使用扫描电子显微镜JSM-35CF(日本JEOL公司)和使用飞利浦公司的SEM-515微量分析仪Link进行X射线光谱分析的不同变化的标准和具体研究。所研究的样品是由未经授权和紧急停井期间的油管制成的;油井的使用寿命为0至15年。为了分析包括氧气和氢气在内的金属的结构和化学成分,从管壁的各个部分机械地制备了碎屑。调查结果。X射线结构研究已使获得数据成为可能,证实在内部井设备的连续操作过程中,管金属中的渗碳体衰变(Fe3С)。X射线结构分析方法有助于识别基体晶格的参数;并且已经评估了晶格的弹性畸变水平(即畸变的微应力)以及铁素体和渗碳体中的碳分布。上述内容提供了在内部井设备的背景下描述耐腐蚀性降低的原因和机制的可能性。独创性除了晶格参数的变化外,还发现了管状金属中渗碳体衰变的新规律;晶格畸变的微应力;以及碳在铁素体和渗碳体中的分布。上述内容有助于以一种新的方式解释在腐蚀性环境中连续运行的内部井结构中耐腐蚀性降低的原因和机制。已经确定了金属加氢和氧化导致的管钢降解的基本来源和机制,这成为科学制定切实可行的措施的基础,以减轻对在化学侵蚀环境中连续运行的内部井设施条件的负面影响。实际意义。氢对金属晶格的降解作用已得到证实。这种效应为油气井的管道结构发生故障创造了条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degradation of the internal well equipment steel under continuous service in the corrosive and aggressive environments
Purpose is to analyze steel degradation of the internal well equipment during its continuous service while contacting directly the corrosive environments. Methods. A range of research concerning the damaged metal tubes of the internal equipment for oil and gas wells, in particular regarding continuous service tubing, comprised both standard and specific studies involving different variations of X-ray spectral analysis with the use of scanning electron microscope JSM-35CF (JEOL Company, Japan) and SEM-515 with microanalyzer Link by Philips Company. The studied samples have been made of tubing in the period of the unauthorized and emergency well shutdowns; life of the wells is 0 up to 15 years. To analyze both structure and chemical composition of metal inclusive of such gases as oxygen and hydrogen, chippings were produced mechanically from various parts of tube walls. Findings. X-ray structural studies have made it possible to obtain data confirming cementite decay (Fe3С) in the tube metal during continuous operation of the internal well equipment. X-ray structural analysis methods have helped identify the parameters of crystal lattice of a matrix; and a level of elastic distortions of the lattice (i.e. microstresses of the distortions) has been evaluated as well as carbon distribution within ferrite and cementite. The abovementioned offered the possibility to describe both reason and mechanism of the reduced resistance to corrosion in the context of internal well equipment. Originality. New regularities under cementite decay in tube metal have been identified in addition to changes in the parameters of a crystal a lattice; microstresses of the lattice distortions; and carbon distribution within ferrite and cementite. The aforesaid helps explain in a new way both reason and mechanism of the reduced resistance to corrosion in the context of internal well structures operating continuously in aggressive environments. The basic sources and mechanisms of tube steel degradation, resulting from the metal hydrogenation and oxidation, have been defined which becomes the foundation to develop scientifically the substantiated measures mitigating the negative impact on the condition of the internal well facilities operating continuously in the chemically aggressive environments. Practical implications. Degrading hydrogen effect on the crystal lattice of metal has been proved. The effect creates conditions under which tube structures of oil and gas wells experience their failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信