用两两比较表示的数据聚类

Q4 Engineering
S. Dvoenko
{"title":"用两两比较表示的数据聚类","authors":"S. Dvoenko","doi":"10.2478/candc-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, experimental data, given in the form of pairwise comparisons, such as distances or similarities, are considered. Clustering algorithms for processing such data are developed based on the well-known k-means procedure. Relations to factor analysis are shown. The problems of improving clustering quality and of finding the proper number of clusters in the case of pairwise comparisons are considered. Illustrative examples are provided.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"51 1","pages":"343 - 387"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering of Data Represented by Pairwise Comparisons\",\"authors\":\"S. Dvoenko\",\"doi\":\"10.2478/candc-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, experimental data, given in the form of pairwise comparisons, such as distances or similarities, are considered. Clustering algorithms for processing such data are developed based on the well-known k-means procedure. Relations to factor analysis are shown. The problems of improving clustering quality and of finding the proper number of clusters in the case of pairwise comparisons are considered. Illustrative examples are provided.\",\"PeriodicalId\":55209,\"journal\":{\"name\":\"Control and Cybernetics\",\"volume\":\"51 1\",\"pages\":\"343 - 387\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/candc-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑以两两比较形式给出的实验数据,如距离或相似性。处理此类数据的聚类算法是基于众所周知的k-means过程开发的。给出了与因子分析的关系。在两两比较的情况下,考虑了提高聚类质量和找到适当数量的聚类的问题。提供了说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering of Data Represented by Pairwise Comparisons
Abstract In this paper, experimental data, given in the form of pairwise comparisons, such as distances or similarities, are considered. Clustering algorithms for processing such data are developed based on the well-known k-means procedure. Relations to factor analysis are shown. The problems of improving clustering quality and of finding the proper number of clusters in the case of pairwise comparisons are considered. Illustrative examples are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信