Jintao Tian, Hongyu Zhang, Xinyu Zhao, W. Liu, Yasser Fakhri
{"title":"β-环糊精/聚乙烯醇/聚丙烯酸水凝胶对环丙沙星的吸附性能及机理研究","authors":"Jintao Tian, Hongyu Zhang, Xinyu Zhao, W. Liu, Yasser Fakhri","doi":"10.1515/ijcre-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract Polyvinyl alcohol (PVA), acrylic acid (AA), and β-cyclodextrin (β-CD) were used as monomers, and ammonium persulfate was used as an initiator. Orthogonal tests were optimized the experimental condition, and aqueous polymerization was used to prepare poly-β-cyclodextrin/polyvinyl alcohol/polyacrylic acid (β-CD/PVA/PAA) hydrogel. The samples were characterized by FT-IR (Fourier transform infrared), SEM (Scanning electron microscopy), and XRD (X-ray diffraction). β-CD/PVA/PAA hydrogel was analyzed, which influenced external environmental factors on the β-CD/PVA/PAA hydrogel adsorption performance, and the kinetic behavior of β-CD/PVA/PAA hydrogel on ciprofloxacin (CIP) adsorption was explored. The results concluded that the prepared β-CD/PVA/PAA hydrogel has a well-defined three-dimensional network structure. The decrease in the pH of the CIP solution and the adsorption temperature reduces the adsorption reaction of β-CD/PVA/PAA hydrogel on CIP. The kinetics of CIP adsorption by β-CD/PVA/PAA hydrogel confirmed the pseudo-second-order kinetic model (R2 > 0.997), the maximum equilibrium adsorption amounts is 372.12 mg/g, the removal rate reaches 74.42%. The adsorption process was mainly chemisorption, the adsorption isotherm fits the Freundlich adsorption isotherm model (R2 > 0.946), and the adsorption process was heterogeneous with multi-molecular layer adsorption. The adsorption process inclined more toward the adsorption of inhomogeneous multi-molecular layers. The β-CD/PVA/PAA hydrogel retained 80% adsorption properties after three adsorption-desorption under optimal conditions.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"21 1","pages":"753 - 765"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the adsorption property and mechanism of β-cyclodextrin/polyvinyl alcohol/polyacrylic acid hydrogel for ciprofloxacin\",\"authors\":\"Jintao Tian, Hongyu Zhang, Xinyu Zhao, W. Liu, Yasser Fakhri\",\"doi\":\"10.1515/ijcre-2022-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Polyvinyl alcohol (PVA), acrylic acid (AA), and β-cyclodextrin (β-CD) were used as monomers, and ammonium persulfate was used as an initiator. Orthogonal tests were optimized the experimental condition, and aqueous polymerization was used to prepare poly-β-cyclodextrin/polyvinyl alcohol/polyacrylic acid (β-CD/PVA/PAA) hydrogel. The samples were characterized by FT-IR (Fourier transform infrared), SEM (Scanning electron microscopy), and XRD (X-ray diffraction). β-CD/PVA/PAA hydrogel was analyzed, which influenced external environmental factors on the β-CD/PVA/PAA hydrogel adsorption performance, and the kinetic behavior of β-CD/PVA/PAA hydrogel on ciprofloxacin (CIP) adsorption was explored. The results concluded that the prepared β-CD/PVA/PAA hydrogel has a well-defined three-dimensional network structure. The decrease in the pH of the CIP solution and the adsorption temperature reduces the adsorption reaction of β-CD/PVA/PAA hydrogel on CIP. The kinetics of CIP adsorption by β-CD/PVA/PAA hydrogel confirmed the pseudo-second-order kinetic model (R2 > 0.997), the maximum equilibrium adsorption amounts is 372.12 mg/g, the removal rate reaches 74.42%. The adsorption process was mainly chemisorption, the adsorption isotherm fits the Freundlich adsorption isotherm model (R2 > 0.946), and the adsorption process was heterogeneous with multi-molecular layer adsorption. The adsorption process inclined more toward the adsorption of inhomogeneous multi-molecular layers. The β-CD/PVA/PAA hydrogel retained 80% adsorption properties after three adsorption-desorption under optimal conditions.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\"21 1\",\"pages\":\"753 - 765\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0089\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
A study on the adsorption property and mechanism of β-cyclodextrin/polyvinyl alcohol/polyacrylic acid hydrogel for ciprofloxacin
Abstract Polyvinyl alcohol (PVA), acrylic acid (AA), and β-cyclodextrin (β-CD) were used as monomers, and ammonium persulfate was used as an initiator. Orthogonal tests were optimized the experimental condition, and aqueous polymerization was used to prepare poly-β-cyclodextrin/polyvinyl alcohol/polyacrylic acid (β-CD/PVA/PAA) hydrogel. The samples were characterized by FT-IR (Fourier transform infrared), SEM (Scanning electron microscopy), and XRD (X-ray diffraction). β-CD/PVA/PAA hydrogel was analyzed, which influenced external environmental factors on the β-CD/PVA/PAA hydrogel adsorption performance, and the kinetic behavior of β-CD/PVA/PAA hydrogel on ciprofloxacin (CIP) adsorption was explored. The results concluded that the prepared β-CD/PVA/PAA hydrogel has a well-defined three-dimensional network structure. The decrease in the pH of the CIP solution and the adsorption temperature reduces the adsorption reaction of β-CD/PVA/PAA hydrogel on CIP. The kinetics of CIP adsorption by β-CD/PVA/PAA hydrogel confirmed the pseudo-second-order kinetic model (R2 > 0.997), the maximum equilibrium adsorption amounts is 372.12 mg/g, the removal rate reaches 74.42%. The adsorption process was mainly chemisorption, the adsorption isotherm fits the Freundlich adsorption isotherm model (R2 > 0.946), and the adsorption process was heterogeneous with multi-molecular layer adsorption. The adsorption process inclined more toward the adsorption of inhomogeneous multi-molecular layers. The β-CD/PVA/PAA hydrogel retained 80% adsorption properties after three adsorption-desorption under optimal conditions.
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.