努纳塔克斯勃朗峰高山植被的人类世轨迹

IF 1.5 4区 生物学 Q3 PLANT SCIENCES
Cédric Dentant, B. Carlson, Nicolas Bartalucci, A. Bayle, S. Lavergne
{"title":"努纳塔克斯勃朗峰高山植被的人类世轨迹","authors":"Cédric Dentant, B. Carlson, Nicolas Bartalucci, A. Bayle, S. Lavergne","doi":"10.1080/23818107.2023.2231503","DOIUrl":null,"url":null,"abstract":"Climate warming causes dramatic glacier retreat and intense vegetation changes in alpine regions. High-elevation nunataks, that is bedrock islands protruding from glaciers with upper-most flowering plants, are no exception. Yet the consequences of climate change on nunatak vegetation remain relatively unexplored. Here, we report findings from a re-visit of historical plant surveys carried out on six nunataks situated between 2180 m a.s.l. and 3509 m a.s.l. amidst the glaciers of the Mont-Blanc range (France). We compared vegetation surveys conducted in 2020 to those made 150 years before, and performed remote sensing analyses to depict changes in vegetation productivity during recent decades. We report an increase in plant species richness for the lowest and least isolated nunataks, which contributed to a strong signal of vegetation greening over the last 35 years. This trend was due to the upward migration of competitive species, but also due to species colonization from neighboring high alpine areas into recently unglaciated microsites. We also highlight striking ecological trajectories that have been little discussed so far, such as stable vegetation composition in the highest and most isolated nunataks, an increase of plant species associated with non-permanent snow-cover and water run-off, an increase of graminoids at lower elevations, and of phanerophytes at higher elevations. We argue that high alpine vegetation changes are not driven by the sole upward migration of lowland competitive species, and that careful monitoring of ongoing ecological changes over broad elevation gradients is necessary to better understand the rapid transformation of high alpine landscapes.","PeriodicalId":54302,"journal":{"name":"Botany Letters","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthropocene trajectories of high alpine vegetation on Mont-Blanc nunataks\",\"authors\":\"Cédric Dentant, B. Carlson, Nicolas Bartalucci, A. Bayle, S. Lavergne\",\"doi\":\"10.1080/23818107.2023.2231503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate warming causes dramatic glacier retreat and intense vegetation changes in alpine regions. High-elevation nunataks, that is bedrock islands protruding from glaciers with upper-most flowering plants, are no exception. Yet the consequences of climate change on nunatak vegetation remain relatively unexplored. Here, we report findings from a re-visit of historical plant surveys carried out on six nunataks situated between 2180 m a.s.l. and 3509 m a.s.l. amidst the glaciers of the Mont-Blanc range (France). We compared vegetation surveys conducted in 2020 to those made 150 years before, and performed remote sensing analyses to depict changes in vegetation productivity during recent decades. We report an increase in plant species richness for the lowest and least isolated nunataks, which contributed to a strong signal of vegetation greening over the last 35 years. This trend was due to the upward migration of competitive species, but also due to species colonization from neighboring high alpine areas into recently unglaciated microsites. We also highlight striking ecological trajectories that have been little discussed so far, such as stable vegetation composition in the highest and most isolated nunataks, an increase of plant species associated with non-permanent snow-cover and water run-off, an increase of graminoids at lower elevations, and of phanerophytes at higher elevations. We argue that high alpine vegetation changes are not driven by the sole upward migration of lowland competitive species, and that careful monitoring of ongoing ecological changes over broad elevation gradients is necessary to better understand the rapid transformation of high alpine landscapes.\",\"PeriodicalId\":54302,\"journal\":{\"name\":\"Botany Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botany Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/23818107.2023.2231503\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botany Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23818107.2023.2231503","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anthropocene trajectories of high alpine vegetation on Mont-Blanc nunataks
Climate warming causes dramatic glacier retreat and intense vegetation changes in alpine regions. High-elevation nunataks, that is bedrock islands protruding from glaciers with upper-most flowering plants, are no exception. Yet the consequences of climate change on nunatak vegetation remain relatively unexplored. Here, we report findings from a re-visit of historical plant surveys carried out on six nunataks situated between 2180 m a.s.l. and 3509 m a.s.l. amidst the glaciers of the Mont-Blanc range (France). We compared vegetation surveys conducted in 2020 to those made 150 years before, and performed remote sensing analyses to depict changes in vegetation productivity during recent decades. We report an increase in plant species richness for the lowest and least isolated nunataks, which contributed to a strong signal of vegetation greening over the last 35 years. This trend was due to the upward migration of competitive species, but also due to species colonization from neighboring high alpine areas into recently unglaciated microsites. We also highlight striking ecological trajectories that have been little discussed so far, such as stable vegetation composition in the highest and most isolated nunataks, an increase of plant species associated with non-permanent snow-cover and water run-off, an increase of graminoids at lower elevations, and of phanerophytes at higher elevations. We argue that high alpine vegetation changes are not driven by the sole upward migration of lowland competitive species, and that careful monitoring of ongoing ecological changes over broad elevation gradients is necessary to better understand the rapid transformation of high alpine landscapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Botany Letters
Botany Letters Agricultural and Biological Sciences-Plant Science
CiteScore
3.10
自引率
6.70%
发文量
54
期刊介绍: Botany Letters is an international scientific journal, published by the French Botanical Society (Société botanique de France) in partnership with Taylor & Francis. Botany Letters replaces Acta Botanica Gallica, which was created in 1993, building on over a century of renowned publications by the Société botanique de France.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信