关于系数选择博弈

Q4 Mathematics
Divyum Sharma, L. Singhal
{"title":"关于系数选择博弈","authors":"Divyum Sharma, L. Singhal","doi":"10.2140/moscow.2021.10.183","DOIUrl":null,"url":null,"abstract":"Nora and Wanda are two players who choose coefficients of a degree $d$ polynomial from some fixed unital commutative ring $R$. Wanda is declared the winner if the polynomial has a root in the ring of fractions of $R$ and Nora is declared the winner otherwise. We extend the theory of these games given by Gasarch, Washington and Zbarsky to all finite cyclic rings and determine the possible outcomes. A family of examples is also constructed using discrete valuation rings for a variant of the game proposed by these authors.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the coefficient-choosing game\",\"authors\":\"Divyum Sharma, L. Singhal\",\"doi\":\"10.2140/moscow.2021.10.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nora and Wanda are two players who choose coefficients of a degree $d$ polynomial from some fixed unital commutative ring $R$. Wanda is declared the winner if the polynomial has a root in the ring of fractions of $R$ and Nora is declared the winner otherwise. We extend the theory of these games given by Gasarch, Washington and Zbarsky to all finite cyclic rings and determine the possible outcomes. A family of examples is also constructed using discrete valuation rings for a variant of the game proposed by these authors.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

Nora和Wanda是从某个固定酉交换环$R$中选择次$d$多项式系数的两个参与者。如果多项式在$R$的分数环中有根,则Wanda被宣布为获胜者,否则Nora被宣布为胜利者。我们将Gasarch、Washington和Zbarsky给出的这些对策的理论推广到所有有限循环环,并确定了可能的结果。对于这些作者提出的游戏变体,还使用离散估值环构建了一系列例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the coefficient-choosing game
Nora and Wanda are two players who choose coefficients of a degree $d$ polynomial from some fixed unital commutative ring $R$. Wanda is declared the winner if the polynomial has a root in the ring of fractions of $R$ and Nora is declared the winner otherwise. We extend the theory of these games given by Gasarch, Washington and Zbarsky to all finite cyclic rings and determine the possible outcomes. A family of examples is also constructed using discrete valuation rings for a variant of the game proposed by these authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信