论传递算子的谱势,\(\boldsymbol t\) -熵,熵与拓扑压力的关系

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
V. I. Bakhtin, A. V. Lebedev
{"title":"论传递算子的谱势,\\(\\boldsymbol t\\) -熵,熵与拓扑压力的关系","authors":"V. I. Bakhtin,&nbsp;A. V. Lebedev","doi":"10.1134/S1061920823010016","DOIUrl":null,"url":null,"abstract":"<p> The paper is devoted to the analysis of relationships between principal objects of the spectral theory of dynamical systems (transfer and weighted shift operators) and basic characteristics of information theory and thermodynamic formalism (entropy and topological pressure). We present explicit formulas linking these objects with the <span>\\(t\\)</span>-entropy and spectral potential. Herewith we uncover the role of inverse rami-rate, the forward entropy along with an essential set, and the property of noncontractibility of a dynamical system. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 1","pages":"1 - 24"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Relationships between the Spectral Potential of Transfer Operators, \\\\(\\\\boldsymbol t\\\\)-Entropy, Entropy and Topological Pressure\",\"authors\":\"V. I. Bakhtin,&nbsp;A. V. Lebedev\",\"doi\":\"10.1134/S1061920823010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The paper is devoted to the analysis of relationships between principal objects of the spectral theory of dynamical systems (transfer and weighted shift operators) and basic characteristics of information theory and thermodynamic formalism (entropy and topological pressure). We present explicit formulas linking these objects with the <span>\\\\(t\\\\)</span>-entropy and spectral potential. Herewith we uncover the role of inverse rami-rate, the forward entropy along with an essential set, and the property of noncontractibility of a dynamical system. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823010016\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823010016","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于分析动力系统谱理论的主要对象(传递算子和加权移位算子)与信息论和热力学形式主义的基本特征(熵和拓扑压力)之间的关系。我们提出了将这些物体与\(t\) -熵和谱势联系起来的显式公式。在此基础上,我们揭示了逆拉米率的作用,正向熵和一个基本集,以及动力系统的不可收缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Relationships between the Spectral Potential of Transfer Operators, \(\boldsymbol t\)-Entropy, Entropy and Topological Pressure

The paper is devoted to the analysis of relationships between principal objects of the spectral theory of dynamical systems (transfer and weighted shift operators) and basic characteristics of information theory and thermodynamic formalism (entropy and topological pressure). We present explicit formulas linking these objects with the \(t\)-entropy and spectral potential. Herewith we uncover the role of inverse rami-rate, the forward entropy along with an essential set, and the property of noncontractibility of a dynamical system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信