抛物柱面函数的全局渐近性及具有非光滑双井形式势的Schrödinger方程的解

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
S. Yu. Dobrokhotov, A. V. Tsvetkova
{"title":"抛物柱面函数的全局渐近性及具有非光滑双井形式势的Schrödinger方程的解","authors":"S. Yu. Dobrokhotov,&nbsp;A. V. Tsvetkova","doi":"10.1134/S106192082301003X","DOIUrl":null,"url":null,"abstract":"<p> In the paper, an approach is discussed that makes it possible to obtain global formulas in terms of Airy functions <span>\\({\\rm Ai}\\)</span> and <span>\\({\\rm Bi}\\)</span> of compound argument for the asymptotics of the functions of parabolic cylinder <span>\\(D_{\\nu}(z)\\)</span> for real <span>\\(z\\)</span> and large <span>\\(\\nu\\)</span>. The parabolic cylinder functions are determined from the Schrödinger equation, with potential in the form of a quadratic parabola, whose asymptotic solution can be constructed using the semiclassical approximation. In this case, the Bohr–Sommerfeld condition singles out the functions with an integer index whose asymptotics is determined only by the function <span>\\({\\rm Ai}\\)</span>. For noninteger indices, the function <span>\\({\\rm Bi}\\)</span> also contributes into the asymptotics. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Asymptotics for Functions of Parabolic Cylinder and Solutions of the Schrödinger Equation with a Potential in the Form of a Nonsmooth Double Well\",\"authors\":\"S. Yu. Dobrokhotov,&nbsp;A. V. Tsvetkova\",\"doi\":\"10.1134/S106192082301003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In the paper, an approach is discussed that makes it possible to obtain global formulas in terms of Airy functions <span>\\\\({\\\\rm Ai}\\\\)</span> and <span>\\\\({\\\\rm Bi}\\\\)</span> of compound argument for the asymptotics of the functions of parabolic cylinder <span>\\\\(D_{\\\\nu}(z)\\\\)</span> for real <span>\\\\(z\\\\)</span> and large <span>\\\\(\\\\nu\\\\)</span>. The parabolic cylinder functions are determined from the Schrödinger equation, with potential in the form of a quadratic parabola, whose asymptotic solution can be constructed using the semiclassical approximation. In this case, the Bohr–Sommerfeld condition singles out the functions with an integer index whose asymptotics is determined only by the function <span>\\\\({\\\\rm Ai}\\\\)</span>. For noninteger indices, the function <span>\\\\({\\\\rm Bi}\\\\)</span> also contributes into the asymptotics. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082301003X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082301003X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了在实\(z\)和大\(\nu\)情况下抛物柱面函数\(D_{\nu}(z)\)的渐近性,用复合参数的Airy函数\({\rm Ai}\)和\({\rm Bi}\)给出全局公式的一种方法。抛物线柱面函数由Schrödinger方程确定,其势为二次抛物线形式,其渐近解可以用半经典近似构造。在这种情况下,bohl - sommerfeld条件挑选出具有整数索引的函数,其渐近性仅由函数\({\rm Ai}\)确定。对于非整数指标,\({\rm Bi}\)函数也有助于渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Asymptotics for Functions of Parabolic Cylinder and Solutions of the Schrödinger Equation with a Potential in the Form of a Nonsmooth Double Well

Global Asymptotics for Functions of Parabolic Cylinder and Solutions of the Schrödinger Equation with a Potential in the Form of a Nonsmooth Double Well

In the paper, an approach is discussed that makes it possible to obtain global formulas in terms of Airy functions \({\rm Ai}\) and \({\rm Bi}\) of compound argument for the asymptotics of the functions of parabolic cylinder \(D_{\nu}(z)\) for real \(z\) and large \(\nu\). The parabolic cylinder functions are determined from the Schrödinger equation, with potential in the form of a quadratic parabola, whose asymptotic solution can be constructed using the semiclassical approximation. In this case, the Bohr–Sommerfeld condition singles out the functions with an integer index whose asymptotics is determined only by the function \({\rm Ai}\). For noninteger indices, the function \({\rm Bi}\) also contributes into the asymptotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信