向日葵部分基因型农艺性状及油脂品质评价

Q3 Agricultural and Biological Sciences
Helia Pub Date : 2021-03-25 DOI:10.1515/helia-2020-0027
K. M. Aboelkassem, A. Ahmed, M. Abdelsatar
{"title":"向日葵部分基因型农艺性状及油脂品质评价","authors":"K. M. Aboelkassem, A. Ahmed, M. Abdelsatar","doi":"10.1515/helia-2020-0027","DOIUrl":null,"url":null,"abstract":"Abstract The present investigation was carried out to evaluate agronomic performance and oil quality of seven sunflower genotypes at Shandaweel Research Station, Agricultural Research Center, Sohag, Egypt during 2018 and 2019 summer seasons. These genetic materials were sown in a randomized complete block design having three replications. Significant genetic variations among evaluated sunflower genotypes for agronomic traits and oil quality were observed. The superior sunflower genotypes were Line 120 for seed yield per hectare (3102.38 kg), Sakha 53 for seed oil content (44.63 %) and Line 125 for oil quality where it contained the highest proportion of unsaturated fatty acids (89.20 %). The phenotypic coefficients of variation were slightly higher than genotypic coefficients of variation for all studied traits. High heritability (exceeded 60%) and genetic advance as percent of mean (ranged from medium to high, exceeded 10%) was observed for most studied traits. Seed yield per plant positively correlated with plant height, stem diameter, head diameter, and 100-seed weight and most chemical traits at phenotypic and genotypic levels. Maximum phenotypic direct effects on seed yield per plant were observed for 100-seed weight, head diameter and total unsaturated fatty acids. While, the highest genotypic direct effect on seed yield per plant was observed for head diameter. Hence, most studied traits could be employed as selection criteria for improving evaluated sunflower genotypes.","PeriodicalId":39086,"journal":{"name":"Helia","volume":"44 1","pages":"43 - 57"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/helia-2020-0027","citationCount":"0","resultStr":"{\"title\":\"Evaluation of some sunflower genotypes for agronomic traits and oil quality\",\"authors\":\"K. M. Aboelkassem, A. Ahmed, M. Abdelsatar\",\"doi\":\"10.1515/helia-2020-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present investigation was carried out to evaluate agronomic performance and oil quality of seven sunflower genotypes at Shandaweel Research Station, Agricultural Research Center, Sohag, Egypt during 2018 and 2019 summer seasons. These genetic materials were sown in a randomized complete block design having three replications. Significant genetic variations among evaluated sunflower genotypes for agronomic traits and oil quality were observed. The superior sunflower genotypes were Line 120 for seed yield per hectare (3102.38 kg), Sakha 53 for seed oil content (44.63 %) and Line 125 for oil quality where it contained the highest proportion of unsaturated fatty acids (89.20 %). The phenotypic coefficients of variation were slightly higher than genotypic coefficients of variation for all studied traits. High heritability (exceeded 60%) and genetic advance as percent of mean (ranged from medium to high, exceeded 10%) was observed for most studied traits. Seed yield per plant positively correlated with plant height, stem diameter, head diameter, and 100-seed weight and most chemical traits at phenotypic and genotypic levels. Maximum phenotypic direct effects on seed yield per plant were observed for 100-seed weight, head diameter and total unsaturated fatty acids. While, the highest genotypic direct effect on seed yield per plant was observed for head diameter. Hence, most studied traits could be employed as selection criteria for improving evaluated sunflower genotypes.\",\"PeriodicalId\":39086,\"journal\":{\"name\":\"Helia\",\"volume\":\"44 1\",\"pages\":\"43 - 57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/helia-2020-0027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/helia-2020-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/helia-2020-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究在2018年和2019年夏季,在埃及Sohag农业研究中心shanaweel研究站对7个向日葵基因型的农艺性能和油质进行了评价。这些遗传物质以随机完全区组设计播种,有三个重复。被评价的向日葵基因型在农艺性状和油脂品质方面存在显著的遗传变异。籽粒产量(3102.38 kg)为120系,籽粒含油量(44.63%)为萨哈53系,含油量(89.20%)为125系。所有性状的表型变异系数均略高于基因变异系数。大多数性状的遗传力高(超过60%),遗传进步占平均百分比高(中~高,超过10%)。在表型和基因型水平上,单株种子产量与株高、茎粗、穗粗、百粒重及大部分化学性状呈正相关。百粒重、穗粗和总不饱和脂肪酸对单株种子产量的直接影响最大。籽粒直径对单株种子产量的直接影响最大。因此,大多数研究性状可作为向日葵基因型改良的选择标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of some sunflower genotypes for agronomic traits and oil quality
Abstract The present investigation was carried out to evaluate agronomic performance and oil quality of seven sunflower genotypes at Shandaweel Research Station, Agricultural Research Center, Sohag, Egypt during 2018 and 2019 summer seasons. These genetic materials were sown in a randomized complete block design having three replications. Significant genetic variations among evaluated sunflower genotypes for agronomic traits and oil quality were observed. The superior sunflower genotypes were Line 120 for seed yield per hectare (3102.38 kg), Sakha 53 for seed oil content (44.63 %) and Line 125 for oil quality where it contained the highest proportion of unsaturated fatty acids (89.20 %). The phenotypic coefficients of variation were slightly higher than genotypic coefficients of variation for all studied traits. High heritability (exceeded 60%) and genetic advance as percent of mean (ranged from medium to high, exceeded 10%) was observed for most studied traits. Seed yield per plant positively correlated with plant height, stem diameter, head diameter, and 100-seed weight and most chemical traits at phenotypic and genotypic levels. Maximum phenotypic direct effects on seed yield per plant were observed for 100-seed weight, head diameter and total unsaturated fatty acids. While, the highest genotypic direct effect on seed yield per plant was observed for head diameter. Hence, most studied traits could be employed as selection criteria for improving evaluated sunflower genotypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Helia
Helia Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.00
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信