{"title":"Gegenbauer微分算子卷积的O’Neil不等式及其应用","authors":"Vagif S. Guliyev sci","doi":"10.4208/jms.v53n1.20.05","DOIUrl":null,"url":null,"abstract":"In this paper we prove an O’Neil inequality for the convolution operator (G-convolution) associated with the Gegenbauer differential operator Gλ. By using an O’Neil inequality for rearrangements we obtain a pointwise rearrangement estimate of the G-convolution. As an application, we obtain necessary and sufficient conditions on the parameters for the boundedness of the G-fractional maximal and G-fractional integral operators from the spaces Lp,λ to Lq,λ and from the spaces L1,λ to the weak spaces WLp,λ. AMS subject classifications: 42B20, 42B25, 42B35, 47G10, 47B37","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"O'Neil Inequality for Convolutions Associated with Gegenbauer Differential Operator and some Applications\",\"authors\":\"Vagif S. Guliyev sci\",\"doi\":\"10.4208/jms.v53n1.20.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove an O’Neil inequality for the convolution operator (G-convolution) associated with the Gegenbauer differential operator Gλ. By using an O’Neil inequality for rearrangements we obtain a pointwise rearrangement estimate of the G-convolution. As an application, we obtain necessary and sufficient conditions on the parameters for the boundedness of the G-fractional maximal and G-fractional integral operators from the spaces Lp,λ to Lq,λ and from the spaces L1,λ to the weak spaces WLp,λ. AMS subject classifications: 42B20, 42B25, 42B35, 47G10, 47B37\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v53n1.20.05\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v53n1.20.05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
O'Neil Inequality for Convolutions Associated with Gegenbauer Differential Operator and some Applications
In this paper we prove an O’Neil inequality for the convolution operator (G-convolution) associated with the Gegenbauer differential operator Gλ. By using an O’Neil inequality for rearrangements we obtain a pointwise rearrangement estimate of the G-convolution. As an application, we obtain necessary and sufficient conditions on the parameters for the boundedness of the G-fractional maximal and G-fractional integral operators from the spaces Lp,λ to Lq,λ and from the spaces L1,λ to the weak spaces WLp,λ. AMS subject classifications: 42B20, 42B25, 42B35, 47G10, 47B37
期刊介绍:
Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.