树的最小正特征值的上界

Pub Date : 2022-11-09 DOI:10.1007/s00026-022-00619-x
Sonu Rani, Sasmita Barik
{"title":"树的最小正特征值的上界","authors":"Sonu Rani,&nbsp;Sasmita Barik","doi":"10.1007/s00026-022-00619-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we undertake the problem of finding the first four trees on a fixed number of vertices with the maximum smallest positive eigenvalue. Let <span>\\({\\mathcal {T}}_{n,d}\\)</span> denote the class of trees on <i>n</i> vertices with diameter <i>d</i>. First, we obtain the bounds on the smallest positive eigenvalue of trees in <span>\\({\\mathcal {T}}_{n,d}\\)</span> for <span>\\(d =2,3,4\\)</span> and then upper bounds on the smallest positive eigenvalue of trees are obtained in general class of all trees on <i>n</i> vertices. Finally, the first four trees on <i>n</i> vertices with the maximum, second maximum, third maximum and fourth maximum smallest positive eigenvalue are characterized.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00619-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Upper Bounds on the Smallest Positive Eigenvalue of Trees\",\"authors\":\"Sonu Rani,&nbsp;Sasmita Barik\",\"doi\":\"10.1007/s00026-022-00619-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we undertake the problem of finding the first four trees on a fixed number of vertices with the maximum smallest positive eigenvalue. Let <span>\\\\({\\\\mathcal {T}}_{n,d}\\\\)</span> denote the class of trees on <i>n</i> vertices with diameter <i>d</i>. First, we obtain the bounds on the smallest positive eigenvalue of trees in <span>\\\\({\\\\mathcal {T}}_{n,d}\\\\)</span> for <span>\\\\(d =2,3,4\\\\)</span> and then upper bounds on the smallest positive eigenvalue of trees are obtained in general class of all trees on <i>n</i> vertices. Finally, the first four trees on <i>n</i> vertices with the maximum, second maximum, third maximum and fourth maximum smallest positive eigenvalue are characterized.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-022-00619-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-022-00619-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00619-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们讨论了在固定数量的具有最大最小正特征值的顶点上寻找前四棵树的问题。设\({\mathcal{T}}_{n,d}\)表示直径为d的n个顶点上的树的类。首先,我们得到了\(d=2,3,4\)的\({\mathcal{T}}_{n,d}\)中树的最小正特征值的界,然后在n个顶点的所有树的一般类中得到了树的最小正本征值的上界。最后,刻画了n个顶点上具有最大、第二最大、第三最大和第四最大最小正特征值的前四棵树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Upper Bounds on the Smallest Positive Eigenvalue of Trees

分享
查看原文
Upper Bounds on the Smallest Positive Eigenvalue of Trees

In this article, we undertake the problem of finding the first four trees on a fixed number of vertices with the maximum smallest positive eigenvalue. Let \({\mathcal {T}}_{n,d}\) denote the class of trees on n vertices with diameter d. First, we obtain the bounds on the smallest positive eigenvalue of trees in \({\mathcal {T}}_{n,d}\) for \(d =2,3,4\) and then upper bounds on the smallest positive eigenvalue of trees are obtained in general class of all trees on n vertices. Finally, the first four trees on n vertices with the maximum, second maximum, third maximum and fourth maximum smallest positive eigenvalue are characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信