一类线性拟群的半格

IF 0.3 Q4 MATHEMATICS, APPLIED
F. Sokhatsky, H. Krainichuk, V. Sydoruk
{"title":"一类线性拟群的半格","authors":"F. Sokhatsky, H. Krainichuk, V. Sydoruk","doi":"10.12958/adm1748","DOIUrl":null,"url":null,"abstract":"A σ-parastrophe of a class of quasigroups A is a class σA of all σ-parastrophes of quasigroups from A. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which contains the variety of all left linear quasigroups, the variety of all left alinear quasigroups, all their parastrophes and all their intersections. It contains 14 varieties, which are distributed into six parastrophic orbits. All quasigroups from these varieties are called dilinear. To obtain all varieties from the bunch, concepts of middle linearity and middle alinearity are introduced. A well-known identity or a system of identities which describes a variety from every parastrophic orbit of the bunch is cited. An algorithm for obtaining identities which describe all varieties from the parastrophic orbits is given. Examples of quasigroups distinguishing one variety from the other are presented.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-lattice of varieties of quasigroups with linearity\",\"authors\":\"F. Sokhatsky, H. Krainichuk, V. Sydoruk\",\"doi\":\"10.12958/adm1748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A σ-parastrophe of a class of quasigroups A is a class σA of all σ-parastrophes of quasigroups from A. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which contains the variety of all left linear quasigroups, the variety of all left alinear quasigroups, all their parastrophes and all their intersections. It contains 14 varieties, which are distributed into six parastrophic orbits. All quasigroups from these varieties are called dilinear. To obtain all varieties from the bunch, concepts of middle linearity and middle alinearity are introduced. A well-known identity or a system of identities which describes a variety from every parastrophic orbit of the bunch is cited. An algorithm for obtaining identities which describe all varieties from the parastrophic orbits is given. Examples of quasigroups distinguishing one variety from the other are presented.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

一类拟群A的σ-副营养子是来自A的拟群的所有σ-副健康子的一类σA。所有成对的副营养子类的集合被称为副营养轨道或特拉斯。类的半闭半格是一堆。线性丛是一组变种,它包含所有左线性拟群的变种、所有左等距拟群的变体、所有它们的副营养子和所有它们的交集。它包含14个变种,分布在6个准营养轨道上。这些变种中的所有拟群都称为双线性群。为了从簇中获得所有的变体,引入了中间线性和中间等线性的概念。引用了一个众所周知的恒等式或一个恒等式系统,它描述了星团中每个准营养轨道上的各种恒等式。给出了一种从准营养轨道获得描述所有品种的恒等式的算法。给出了区分一个变种和另一个变种的拟群的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-lattice of varieties of quasigroups with linearity
A σ-parastrophe of a class of quasigroups A is a class σA of all σ-parastrophes of quasigroups from A. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which contains the variety of all left linear quasigroups, the variety of all left alinear quasigroups, all their parastrophes and all their intersections. It contains 14 varieties, which are distributed into six parastrophic orbits. All quasigroups from these varieties are called dilinear. To obtain all varieties from the bunch, concepts of middle linearity and middle alinearity are introduced. A well-known identity or a system of identities which describes a variety from every parastrophic orbit of the bunch is cited. An algorithm for obtaining identities which describe all varieties from the parastrophic orbits is given. Examples of quasigroups distinguishing one variety from the other are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信