{"title":"在Hector SLAM方法中用EKF实现里程测量","authors":"Ming-Yi Ju, Yu-Jen Chen, Wei-Cheng Jiang","doi":"10.5875/ausmt.v8i1.1558","DOIUrl":null,"url":null,"abstract":"Map building for plain spatial soundings, such as a long and straight corridor in simultaneous localization and mapping (SLAM) is a challenging problem because of lacks of distinguishable landmarks. Such an environment is highly possible to induce erroneous mapping results, such as alias problems. This paper presents a scan matching algorithm with odometer prediction using Extended Kalman Filter (EKF) and an optimal path planning based on regression subgoals. The scan matching process can relax the problems of local minima by means of an effective correction in the odometrical information. By iterating odometrical corrections in each step of running motion model, the matching result can be better than one only believes in individual information from scanning or odometry. Meanwhile, an optimal path planning utilizing an A * algorithm with a regression method is introduced to ensure a mobile robot be able to move elaborately around the corner and speed up along a straight line. Experiments in an indoor environment have been conducted to verify the effectiveness and validation of the proposed techniques.","PeriodicalId":38109,"journal":{"name":"International Journal of Automation and Smart Technology","volume":"8 1","pages":"9-18"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Implementation of Odometry with EKF in Hector SLAM Methods\",\"authors\":\"Ming-Yi Ju, Yu-Jen Chen, Wei-Cheng Jiang\",\"doi\":\"10.5875/ausmt.v8i1.1558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Map building for plain spatial soundings, such as a long and straight corridor in simultaneous localization and mapping (SLAM) is a challenging problem because of lacks of distinguishable landmarks. Such an environment is highly possible to induce erroneous mapping results, such as alias problems. This paper presents a scan matching algorithm with odometer prediction using Extended Kalman Filter (EKF) and an optimal path planning based on regression subgoals. The scan matching process can relax the problems of local minima by means of an effective correction in the odometrical information. By iterating odometrical corrections in each step of running motion model, the matching result can be better than one only believes in individual information from scanning or odometry. Meanwhile, an optimal path planning utilizing an A * algorithm with a regression method is introduced to ensure a mobile robot be able to move elaborately around the corner and speed up along a straight line. Experiments in an indoor environment have been conducted to verify the effectiveness and validation of the proposed techniques.\",\"PeriodicalId\":38109,\"journal\":{\"name\":\"International Journal of Automation and Smart Technology\",\"volume\":\"8 1\",\"pages\":\"9-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Smart Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5875/ausmt.v8i1.1558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Smart Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5875/ausmt.v8i1.1558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Implementation of Odometry with EKF in Hector SLAM Methods
Map building for plain spatial soundings, such as a long and straight corridor in simultaneous localization and mapping (SLAM) is a challenging problem because of lacks of distinguishable landmarks. Such an environment is highly possible to induce erroneous mapping results, such as alias problems. This paper presents a scan matching algorithm with odometer prediction using Extended Kalman Filter (EKF) and an optimal path planning based on regression subgoals. The scan matching process can relax the problems of local minima by means of an effective correction in the odometrical information. By iterating odometrical corrections in each step of running motion model, the matching result can be better than one only believes in individual information from scanning or odometry. Meanwhile, an optimal path planning utilizing an A * algorithm with a regression method is introduced to ensure a mobile robot be able to move elaborately around the corner and speed up along a straight line. Experiments in an indoor environment have been conducted to verify the effectiveness and validation of the proposed techniques.
期刊介绍:
International Journal of Automation and Smart Technology (AUSMT) is a peer-reviewed, open-access journal devoted to publishing research papers in the fields of automation and smart technology. Currently, the journal is abstracted in Scopus, INSPEC and DOAJ (Directory of Open Access Journals). The research areas of the journal include but are not limited to the fields of mechatronics, automation, ambient Intelligence, sensor networks, human-computer interfaces, and robotics. These technologies should be developed with the major purpose to increase the quality of life as well as to work towards environmental, economic and social sustainability for future generations. AUSMT endeavors to provide a worldwide forum for the dynamic exchange of ideas and findings from research of different disciplines from around the world. Also, AUSMT actively seeks to encourage interaction and cooperation between academia and industry along the fields of automation and smart technology. For the aforementioned purposes, AUSMT maps out 5 areas of interests. Each of them represents a pillar for better future life: - Intelligent Automation Technology. - Ambient Intelligence, Context Awareness, and Sensor Networks. - Human-Computer Interface. - Optomechatronic Modules and Systems. - Robotics, Intelligent Devices and Systems.